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Difference in integral characteristics of the radiation field calculated 
using one- and three- dimensional models of a stochastic medium has been 
studied using approximate asymptotic estimates and Monte-Carlo calculations. 
For this purpose, standard weighting estimates obtained by Monte-Carlo 
method are partially averaged analytically over the distributions of the 
extinction coefficients in a special “Poisson” models of random media. For 
testing problem with the Henyey-Greenstein scattering phase function, 
asymptotic and numerical estimates of the transmittance probability obtained 
were in a close agreement. Moreover introduction of additional horizontal 
stochastisity decreased both the transmittance and albedo probabilities. 

 

1. INTRODUCTION 
 

The process of radiation transfer through a plane 
horizontal layer of a medium which density is a 
uniform random function of coordinates is considered. 
Radiation flux with the “unit power” incident along 
vertical direction on the upper boundary of the layer 
is assumed to be a source. In a one-dimensional 
model the medium density is a random function of 
height and it is estimated by vertical Poisson point 
flux with the intensity λ. The density between the 
flux points is assumed to be constant. It is known 
(see Ref. 1) that correlation length for such a random 
function is equal to 1/λ. 

Previous investigations (see, for example, 
Ref. 1) show that in the case of optically thick one-
dimensional random layers the radiation transfer 
probability is mainly determined by the correlation 
length and the mean density. This happens because 
at a sufficient scattering anisotropy the transfer 
probability is well approximated by the asymptotic 
exp(-τ/L), whereas fluctuations of the random 
optical thickness τ are determined by the integral 
parameters of random density. Thus, the one-
dimensional random medium model considered is 
reasonably universal in the radiation transfer 
investigations.  

To introduce a three-dimensional model similar 
randomization of the density in horizontal layers of 
vertical partioning is made. Because of the necessity of 
limiting horizontal point Poisson fluxes the problem of 
estimating the transfer probability and albedo of a 
particle in the case of a parallelepiped-shaped medium, 
or, what is the same, for a finite plane horizontal layer 
with reasonably large extension is considered in our 
numerical simulations. In a one-dimensional model of 
the medium the Poisson flux of points along vertical 
axis is constructed within the parallelepiped 

boundaries.  The parallelepiped is split into random 
layers. Then the density value corresponding to a given 
one-dimensional function is chosen independently in 
each layer. In a three-dimensional model the Poisson 
fluxes are constructed along three coordinate axes 
within the parallelepiped boundaries and the density 
value corresponding to the one-dimensional distribution 
function is chosen independently in each unit 
parallelepiped. Partial analytical averaging of the 
Monte-Carlo weighting estimate over random density 
distribution is made at a fixed splitting. Conditions for 
the variance finiteness of these partially averaged 
estimates are formulated. Calculations of both transfer 
and albedo probabilities are performed. 

New algorithm allows us to calculate small 
changes in the transfer process parameters, for example, 
albedo changes, when coming from a determinant 
medium to a stochastic one with the same average 
density. Besides, this algorithm makes it possible to 
calculate the changes in the transfer process parameters 
when coming from one-dimensional random field model 
to a three-dimensional one. The calculations performed 
for testing the technique using Henyey-Greenstein 
scattering phase function give estimate of the 
penetration probability changes coinciding very closely 
with the asymptotic one. It is found that by 
introducing additional horizontal stochastisity into the 
problem considered decreases both the transmittance 
probability and albedo. 

 

2. ESTIMATE OF UNIFORM RANDOM FIELDS 
BASED ON POINT FLUXES 

 

Let us consider in a three-dimensional space the 
following models of uniform random fields. 

1) The Poisson flux of points τ0 = 0, τi+1 = τi + Δτi, 
is constructed along vertical axis x in the layer 
0 ≤ x ≤ H, (y, z) ∈ R2. Here Δτi  is the random 
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quantity distributed with the probability density  
λexp(–λt), λ = L–1. Thus we have a division of the 
layer {0 ≤ x ≤ H, (y, z) ∈ R2} into m random layers 
τi ≤ x ≤ τi+1, τ0 = 0, τm = H. Then, σi  value is 
independently chosen in each of these layers, where 

 

σi = 
⎩
⎨
⎧

 

σ
(1)

   with the  probability p,

σ
(2)

   with the probability 1 – p.
 

 

Normalized correlation function for this field is 
exp(–λx) (see Ref. 1) and, hence, the correlation 
length is equal to 1/λ. 

2) Fluxes of points of the above kind are 
independently constructed along each axis at 
0 ≤ x ≤ H1, 0 ≤ y, z ≤ H2. As a result, we obtain the 
following subdivisions: 
 

along axis x: (τi, τi+1),  i = 0, 1, ... , mx- layers; 

along axes y: (tj, tj+1),  j = 0, 1, ... , my- layers; 

along axes z: (lk, lk+1),  k = 0, 1, ... , mz- layers. 
 

Combining these three subdivisions we obtain a 
subdivision of the parallelepiped 0 ≤ x ≤ H1, 
0 ≤ y, z ≤ H2 into mx my mz   parallelepipeds. Then the 
value  

 

σijk = 
⎩
⎨
⎧

 

σ
(1)

    with  the  probability p,

σ
(2)

   with  the  probability 1 – p.
 

 

is independently chosen in each elementary 
parallelepiped.  

These models of the fields will then be applied 
to solve the transfer theory problem. In fact, one can 
consider more general models of random fields by 
performing the above random division along the 
coordinate axes and choosing, independently in each 
layer (or in each parallelepiped), random value σi  
(σijk ) which corresponds to a given one-dimensional 
distribution function Fξ(x). 

 

3. ASYMPTOTIC ESTIMATES OF THE 
PENETRATION PROBABILITY USING 

EQUATIONS OF THE RECONSTRUCTION 
THEORY 

 

It should be pointed out that in the case of a 
determinate plane-parallel medium the required 
penetration probability I(H) may be quite satisfactorily 
estimated by the following asymptotic formula: 

 

Ias(τ(H)) ¯
{

 e
−τ(H)/L

,   τ(H) = ⌡⌠
0

H

 

 

σ(x) dx, (3.1) 

 
where L is the diffusion length. If the scattering is 
highly anisotropic, L can be estimated using the 
“transport” approximation for the scattering phase 
function  

w(ν, ν′) = (1 – μ0) (1/4π) + μ0 δ(ν – ν′), (3.2) 
 
This approximation conserves average cosine, μ0, of 
the scattering angle. The approximate value of L 
being defined, in this case, by the following 
expressions: 
 

2
∼
l

∼qL
 = ln 

L + 
∼
l

L – 
∼
l
 ;  

∼q = 
q(1 – μ0)

1 – qμ0
 ;  

∼
l = 

l
1 – qμ0

 . 

 

As an example, the estimate I(20) ≈ 0.0236 was 
obtained by Monte-Carlo method using the radiation 
model with standard Henyey-Greenstein scattering 
phase function considered in Part 5 and parameters 
μ0 = q = 0.9, while calculation by Eq. (3.1) with 
L = 5.4 gave Ias(20) = 0.0246. It is clear that 
approximation by Eq. 3.1 can be improved at high 
τ(H) by entering the coefficient 0.0236/0.0246 = 0.959 
in front of the exponent. 

Based on the reconstruction theory using 
Eq. (3.1) the following asymptotic formula for the 
one-dimensional Poisson field σ(x) with the 
parameter λ (or for the first variant from Part 2) was 
obtained in Ref. 1: 

 

EI[τ(H)] = EIas[τ(H)] ¯

{
 λ

–2
/[E (λ – α + σ/L)

2
] e

–αH
,  

  (3.3) 
 

while α is calculated by the following equation:  
 

λ E (λ – α + σ/L)
–1

 = 1. 
 

Here the averaging is done over one-dimensional 
field distribution. In this case for the binary 
distribution, which is the basic in this paper, one can 
write the following expression: 

 

E (λ – α + σ/L)
–1

 = 

= p (λ – α + σ
(1)

/L) + (1 – p) (λ – α + σ
(2)

/L). 
 

Now let us consider some possibilities of making 
similar asymptotic estimates for a three-dimensional 
field σ(x, y, z) presented in Part 2. It is clear that 
the large-scale horizontal (along (y, z)) 
inhomogeneities  only weakly effect on the 
asymptotic and therefore Eq. (3.3) with λ = λx has 
also to give satisfactory results in the three-
dimensional case at λ–1

y , λ–1
z  >> L. 

From the other hand, it is well known that in 
the case of small-scale horizontal inhomogeneities (at 
λ–1

y , λ–1
z  << L) horizontal averaging is admissible, 

except for exactly vertical directions.  In other words 
the particle trajectory is constructed actually inside 
the medium with σ ≡ Eσ. 

Using transport approximation (3.2) one can 
consider the transfer problem in the case of isotropic 
scattering using the following parameters: 

 

σtr = ν σ,   σs,tr = qσ (1 – μ0),   qtr = q (1 – μ0)/ν,  

ν = 1 – qμ0. 
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Once the particle falls along vertical direction 
on the upper surface of the layer at the point 
(x0 = 0, y0, z0) (axis x is assumed to look 
downward), it can experience according to Eq. (3.2) 
some “delta-scattering” and then the particle either 
escapes through the lower layer surface x = H or is 
absorbed or is scattered isotropically.  The functional 
to be found, in this case or the escape probability, 
consists of two parts: 

 

I
(0)

(H) = I 

(0)

1 (H) + I 

(0)

2 (H), (3.4) 
 

where I 
(0)

1 (H)  is the escape probability without 
isotropic scattering and absorption, while  

 

I 

(0)

2 (H) = ⌡⌠
0

H

 

 

E f (t, σ) i
(0)

(t, H) dt, 

 

where f (t; σ)  is the probability density distribution 
of the first isotropic scattering at a given σ, 
i
(0)

(t, H)  is the contribution into the functional 
sought, i.e., the escape probability at the point x = t, 
y = y0, z = z0  for isotropic unit source of particles at 
σ ≡ Eσ. Besides, the weighting function E f (t, σ) 
can be approximated here by  

 

f (t, Eσ) = Eσs,tr exp (– t Eσs,tr), 
 

or by the distribution function of the first isotropic 
scattering in a modified medium with σ ≡ νEσ. As a 
result, based on the above discussed action of small-
scale inhomogeneities on the particle transfer one can 
obtain the following estimate: 

 

I 

(0)

2  ≈  I
(0)
s  – e–νHEσ, 

 

where I
(0)
s  is the penetration probability through the 

layer with σ ≡ Eσ in the transport approximation. 

Next, using asymptotic formula for I
(0)
s   the following 

expression can be obtained: 
 

I 

(0)

2  ≈ C e–νHEσ/L0 – e–νHEσ, 
 

where the coefficient C is close to unity and may be 
determined in the manner discussed early. As an 
example, for the Henyey-Greenstein scattering phase 
function (see Part 5) we have ν = 0.19, 
qtr = 0.09/0.19 ≈ 0.4737, C = 0.959 and L0 = 1.034. 
That means that 

 

I 

(0)

2  = 0.959 e
–0.1838H

 – e
–0.19H

. 
 

It should be noted, first of all, that in order to 

determine I
(0)

1 (H) in the transport approximation, it 
is expressed by the following expression: 

 

I 

(0)

1 (H) = E e
–τ

(1)
tr (H)

, (3.5) 
 

where 

τ
(1)

tr (H) = ⌡⌠
0

H

 

 

[σs,tr(T) + σs,tr(t)] dt = ⌡⌠
0

H

 

 

νσ(t) dt. 

 

Thus, I 
(0)

1 (H)  can be asymptotically estimated 

using Eq. (3.3) with L replaced by ν–1. As an 
example, let us consider the problem already 
described above (see also Part 5) at   λ–1 = L = 5.4, 
H = 20, p = 0.5, σ(1) = 0.6, σ(2) = 1.4, Eσ = 1. 

Eq. (3.3) in the transport approximation or, 
what is the same, at L = 1.034/0.19, takes the form 

 

EI(τ(H)) ¯
{

 0.8915 e
–0.1582H

. 

 

Control calculations performed by Monte-Carlo 
method show that it is appropriate to introduce into 
the latter expression an additional factor which is 
approximately 1.035. Thus the refined asymptotic 
formula is as follows: 

 

EI(τ(H)) ¯
{

 0.9227 e
–0.1582H

, (3.6) 

 

while at H = 20 EI(τ(20)) ≈ 0.03899.  
Expression (3.3) gives the following estimate of 

the parameter defined by Eq. (3.5): 
 

I 

(0)

1 (H) ¯
{

 0.8867 e
–0.1628H

. 

 

Thus, the final estimate of I
(0)

(H) takes the 
following form: 

 

I
(0)

(H) ≈ 0.959 e
–0.1838H

 – e
–0.19H

 + 0.8867 e
–0.1628H

  
 

and I
(0)

(20) ≈ 0.03610, that means that the particle 
penetration probability for the stochastic three-
dimensional layer with small-scale horizontal 
inhomogeneities is 7% lower than that for a 
stochastic horizontally uniform layer. 

 
4.PARTIALLY AVERAGED ESTIMATES 

OBTAINED BY MONTE-CARLO METHOD 
 

1. In our discussion below we use the following 
designations: r = (x, y, z), X = (r, ρ) is the point of 
collision in the phase space of coordinates and 
directions. 

Let us consider the random parameter (see 
Ref. 2): 

 

ξ = QN(σ) = Π
i=1

N

 
k (Xi–1, Xi; σ)
p (Xi–1, Xi)

 D,   Q0 = 1, 

 

where k(X′, X; σ) is the kernel of the particle 
transfer integral equation (see Ref. 2) with the 
following parameters: 

 

σs(r)=q σ(r),   σc(r)=(1 – q) σ(r),   0< q < 1,  (4.1) 
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where q is the particle survival probability at a 
collision, or, what is the same, the scattering 
probability at a scattering phase function ws(μ); μ is 
the cosine of the scattering angle. The kernel with 
the following parameters:  

σs,0 = q0 σ0 ,   σc,0 = (1 – q) σ0 ,   0< q0 < 1  (4.2) 

and the same scattering phase function is considered as 
the transition density p(X′, X) of the Markov chain of 
collisions to be estimated. The value of D is equal to 
zero or unity in accordance with the escape variant 
whose probability is estimated. For this particular σ(r), 
the weighting factor k(Xi–1, Xi; σ)/p(Xi–1, Xi) 
represents the ratio between the probability densities 
of free path length after scattering at the point Xi–1 
which are calculated for the medium models with the 
parameters given by Eqs. (4.2) and (4.3), and a given 
scattering phase function (see Ref. 2). The  
probability sought  

P = Eσ Mω {QN(σ)⏐σ} 

represents the average value of the functional to be 
estimated for random medium (ω is the random 
trajectory) (see Ref. 2).  

For the first model of the random field presented 
in Part 2 one can write the following expression: 
 

p– = Mω,{ τi }

⎩
⎨
⎧ 

 
 Ï
j=1

m

⎝
⎜
⎛ 

 
p ⎝
⎛

⎠
⎞qσ(1)

q0 σ0
 

ni

 exp (– (σ(1) – σ0) li) + 

 

+ (1 – p) ⎝
⎛

⎠
⎞qσ(2)

q0 σ0
 

ni

 exp (– (σ(2) – σ0) li)
⎠
⎟
⎞ 

 ⎭
⎬
⎫ 
,
 
 (4.3) 

 

where m is the number of random layers along the x 
axis, σi  is the random value of σ in the ith layer, ni  
is the number of the particle collisions in the ith 
layer, li  is the particle free path in the ith layer, N 
is the random number of the last state of the collision 
chain and thus xN  is the absorption point or the first 
collision point out of the area which is assumed to be 
surrounded by fictitious medium, in which σ = σ0 
and q = 0. 

For the second field model Eq. (4.3) takes the 
following form: 
 
Eσ Mω {QN(σ)⏐σ} = Mω,{ τi },{tj},{lk} × 
 

× 
⎩
⎨
⎧ 

 
 Ï
i=1

mx

 Ï
j=1

my

 Ï
k=1

mz

⎝
⎜
⎛ 

 
p ⎝
⎛

⎠
⎞qσ(1)

q0 σ0
  

nijk

exp (– (σ(1)
 – σ0) lijk) + 

 

+ (1 – p) ⎝
⎛

⎠
⎞qσ(2)

q0 σ0
 

nijk

exp (– (σ(2) – σ0) lijk)
⎠
⎟
⎞ 

 ⎭
⎬
⎫ 
,
 
 (4.4) 

 

where nijk is the number of particle collisions in the 
ijkth parallelepiped, lijk is the free path of a particle 
within this parallelepiped, mx, my, and mz are the 
numbers of layers along the x, y and z axis, 
respectively. 

As mentioned above, the distribution of σi (σijk) 
does not need to be Bernulli one. It may have any 
distribution function Fξ(x). Moreover, if we manage 

to express analytically the mathematical expectation 
Eσ{QN  (σ)⏐ω, {τi }} at fixed trajectories and layer 

boundaries, expressions similar to Eqs. (4.3) and 
(4.4) are obtained. But if the integral representing 
the expectation  

 

⌡⌠
R

 
 

 

⎝
⎛

⎠
⎞qσ

q0 σ0
  

ni

 exp (– (σ – σ0) li) dFξ(σ) 

 

can not be calculated analytically, it may be replaced 
by some approximate quadrature formula. 

2. Then, the conditions for finiteness of the 
variance of partially averaged weighted estimate are 
deduced.  

The variance is finite if the parameter  

Eσ Mω {Q
2
N(σ)⏐σ}, is finite, where  

 

QN(σ) = Π ⎝
⎛

⎠
⎞qσ

q0 σ0
  

n

 exp (– (σ – σ0) l). 

 

Here σ is the random density value in ijkth 
parallelepiped, n and l are the number of the particle 
collisions and the free path in ijkth perallelepiped, 
respectively.  

Let us consider the following expression: 
 

Q
2
N(σ) = Π 

⎝
⎛

⎠
⎞q2σ2

q
2
0 σ

2
0
  

n

 exp (– 2 (σ – σ0) l) = 

 

= Π ⎝
⎜
⎛

⎠
⎟
⎞σ–

q0 σ0
  

n

 
exp (– (σ– – σ0) l)

exp (– (σ– – σ0) l)
 exp (– 2 (σ – σ0) l), 

 

where –σ = q
2
 σ

2
/(q0 σ0).  

If exp(–2(σ – σ0)l)/exp(–(–σ – σ0)l) does not 

exceed l, the average value of Q
2
N(σ) is not higher 

than that of the functional to be estimated for the 

cross section –s which is finite. 
Thus, the inequality exp (– 2 (σ – σ0) l) + 

+ (–σ – σ0) l) ≤ 1 should be solved to determine σ.  
This inequality is equivalent either to  

 

2 (σ0 – σ) + (–σ – σ0) ≤ 0 
 

or 
 

σ
2
 – 2σ + q

2
 ≤ 0 (4.5) 

 

if we assume that q0 = 1, σ0 = q2. 
3. Now let us consider the geometric part of the 

modeling algorithm. First, we construct a division of 
a given parallelepiped into random unit 
parallelepipeds for each trajectory. Then the 
following algorithm of the free path lijk  calculations 
within these parallelepipeds is used.  
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It is assumed that l is the free path (chosen 
according to σ0); (nx, ny, nz) is the number of the 
parallelepiped where the next collision occurs, 
(nx1, ny1, nz1) is the number of the parallelepiped 
where previous collision took place. First we 
calculate, in each layer, the parts of the free path 
lx[nx1], ..., lx[nx], ly[ny1], ..., ly[ny]; lz[nz1], ..., 
lz[nz], directed along x, and y, z axis, respectively. 
The sum of the parts directed along each axis is 
equal to l.  

Then, current values nx1, ny1, nz1 are 
assigned to the indices i, j, k, respectively and 
values of lx[i], ly[j], lz[k] are compared. If lx[i] is 
the least among them, current value of l[i, j] [k] is 
increased by lx[i]. Current value of the index I is 
also changed in the following manner: if nx1 exceeds 
nx1, i is increased by unity, and if nx is lower than 
nx1, i is decreased by unity. If ly[j] or lz[k] are 
the lowest among, lx[i], ly[j], lz[k], current value 
of l[i, j] [k] is increased by ly[j] or by lz[k], 
respectively. Current values of indices j and k are 
also changed. But in the case when nx1 = nx, 
ny1 = ny, nz1 = nz l[i, j] [k] is increased by l. 
This process terminates when   i = nx, j = ny, 
k = nz. 

 
5. TEST TASK 

 
Now consider the problem on estimating of the 

average penetration probability and average 
backscatter (albedo) in a medium layer 0 ≤ x ≤ H1, 
0 ≤ y, z ≤ H2, which density is the random field 
described in Part 2, while p = 0.5, σ(1) = 0.6, 
σ(2) = 1.4, q = 0.9. The problem is solved by 
estimating the particle trajectory using standard 
techniques (see Ref. 2). The value of the scattering 
angle cosine is estimated according to the Henyey-
Greenstein scattering phase function  

 

ws(μ) = 
1
2 

1 – μ
2
0

(1 + μ
2
0 – 2μμ0)

3/2 ;   – 1 ≤ μ ≤ 1,  

 

μ0 = Eμ = 0.9. 

 
For such scattering phase function at q = 0.9 

using the weighting algorithm one can obtain 
L ≈ 5.4. The particle trajectory estimates are made 
for a determinate medium with σ0 = 0.81 and 
q0 = 1. It is easy to see from Eq. (4.5) that the 
condition for finiteness of the variance of the 
Monte-Carlo averaged weighted estimate is 
fulfilled. The trajectories are directed from the 
point (0, H2/2, H2/2) along the x axis and are 
observed until the moment of particle escape from 
the region 0 ≤ x ≤ H1, 0 ≤ y, z ≤ H2.  Out of this 
region q0 = 0. The following   versions of 
calculations were carried out for the above 
discussed random medium models:  

 

A) λx = λy = λz = 1/L, H1 = 20, H2 = 100; 

B) λx = λy = λz = 1/L, H1 = 20, H2 = 40. 
 
Total number of N = 100000 trajectories were 

used in each variant. 

In what follows we use the designations: P
(p)

 

and P
(a)

 which are the average penetration and 
albedo probabilities, respectively, while 3s, 1s and 1d 
designate three-dimensional stochastic, one-
dimensional stochastic and one-dimensional 
determinate with the extinction coefficient σ ≡ Eσ 
media, respectively, σN is the estimate of the rms 
error in the results calculated. Let us briefly review 
the results obtained for the basic variant A. As is 
evident from Table II, the average penetration 
probability for the three-dimensional random field 
model is approximately 9% lower than that for the 
one-dimensional one.  
 
TABLE I. Average penetration probability, 
calculations. 
 

 P
(p)

3s  σN P
(p)

1s  σN 

A 0.0348 0.0004 0.0381 0.0004 

B 0.0338 0.0003 0.0366 0.0004 
 

TABLE II. Average penetration probability 
variations obtained when passing from one-
dimensional stochastic medium to a three-
dimensional one. 

 

 P
(p)

3s  – P
(p)

1s  σN 

A – 0.0033 0.0003 

B – 0.0027 0.0002 
 
TABLE III. Average albedo, calculations. 
 

 P
(a)

3s  σN P
(a)

1s  σN P
(a)

1d σN 

A 0.0662 0.0006 0.0676 0.0008 0.0681 0.0007
B 0.0647 0.0005 0.0653 0.0007 0.0671 0.0006

 

One can see from Table IV that the average 
albedo decreases by 2.8% in the determinate medium, 
as compared to a three-dimensional stochastic one 
with the same average density. 

Table V shows that the average albedo decreases 
by 2.1% in the one-dimensional stochastic medium 
compared to a three-dimensional one. 

 
TABLE IV. Average albedo variations due to 
change from determinate medium to a three-
dimensional stochastic one. 

 

 P
(a)

1d – P
(a)

3s  σN 

A 0.0019 0.0004 

B 0.0023 0.0003 
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TABLE V. Average albedo variations obtained due 
to change from a one-dimensional medium model to 
a three-dimensional one. 

 

 P
(a)

1s  – P
(a)

3s  σN 

A 0.0014 0.0004 

B 0.0006 0.0003 
 

TABLE VI.  The change of average albedo due to 
the change from determinate model to a stochastic 
one-dimensional one. 

 

 P
(a)

1d – P
(a)

1s  σN 

A 0.0005 0.0006 

B 0.0017 0.0004 
 

For the changes in the average albedo due to the 
change from a determinate medium to a one-
dimensional stochastic one to be found, additional 
calculations were carried out in the infinite layer 
using N=4000000 trajectories. As a result we obtain 
the following estimate: 

 

P
(a)

1d – P
(a)

1s  ≈ 0.0001. 
 

These albedo changes are quite reasonable since 
it is obvious that in the layers with high optical 
thickness τ the albedo Pa, is a convex function of τ 
(that is, P′a (τ) > 0, P″a(τ) < 0), whose average value 
is lower than its value at average τ.  

Note that the estimate  
 

P
(p)

3s  – P
(p)

1s  = – 0.0033 
 

obtained in variant A with the approximate rms error 
σN = 0.0003 well agrees with the analytical estimate  

 

I
(0)

(20) – EI(τ(20)) = – 0.00289, 
 

obtained in Part 3 for the case of low-scale horizontal 
inhomogeneities. This means that the model described 
in Part 3 is quite satisfactory even at λ–1

y , λ–1
z  ≈ L.  

This occurs, probably, due to the presence of 
inhomogeneities along both y and z axis.  

As was discussed in the Introduction, it is a 
little bit unexpected fact that the change from a one-
dimensional stochastic medium to a three-dimensional 
one decreases not only the penetration probability, 
but the albedo probability, as well.  

Comparison between the results obtained in 
variants A and B gives the estimate of the 
parallelepiped horizontal size finiteness effect on 
the average penetration and albedo probabilities for 
the “centered” radiation sources. Specifically, 
decrease in the horizontal size considerably 
increases the changes in average albedo when going 
from a determinate medium to a stochastic one.  

The models and estimates discussed above are 
reasonably general since Monte-Carlo calculations 
indicate that average radiation flux passing through 
the stochastic optically thick layer is mainly 
determined by the medium correlation length, 
which is equal to λ–1 for the Poisson field. 

 
6. CONCLUSION 

 
Based on the results obtained we can conclude 

that when performing calculations of the radiation 
transfer, stochastically nonuniform layer can be 
replaced in the first approximation by a uniform 
layer with the total extinction coefficient equal to 
σ = αL where L is the diffusion length for a given 
scattering phase function and survival coefficient q, 
while the value of α is determined by the one-
dimensional Poisson field approximation according 
to Eq. (3.3).  It should be taken into account that 
using this substitution for the layer with reasonably 
high optical thickness one can also reconstruct 
albedo at different levels. In the case of high 
optical thickness and if horizontal inhomogeneity is 
sufficient one may consider only first term in 
Eq. (3.4). Thus, in the transport approximation α 
is determined by the directly transmitted “delta-
scattered” radiation. 

The constants preaveraged in this way can be 
improved by considering the results obtained by 
Monte-Carlo method for the initial complex 
stochastic medium models to be experimental and 
then estimating the constants for simplified models 
by the methods of solving the parametric inverse 
problem (see Ref. 1). 
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