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It is shown that lacunarity characterizing a molecular absorption spectrum as a multifractal 
allows estimation of the error in the method of k-functions for multicomponent inhomogeneous gas 
media without cumbersome line-by-line calculations. 

 
The specific features of climate simulation 

problems impose rather strict requirements on the 
accuracy and speed of radiative blocks.1,2 Therefore, 
significant efforts of investigators have been aimed at 
the development of efficient methods for 
parameterization of characteristics of molecular and 
aerosol extinction that enter into the radiative 
transfer equation that would allow one to reach a 
compromise between the computational time and 
accuracy.  

Molecular absorption spectra of atmospheric 
gases are characterized by high selectivity as 
compared to aerosol extinction spectra. The 
characteristic scale of variation of the molecular 
absorption coefficient is 10–1 cm–1. Besides, the 
number of spectral lines to be taken into account is 
large. Thus, for example, in the HITRAN-2000 
database the total number of absorption lines 
exceeds 106. Therefore, direct methods for 
calculating characteristics of molecular absorption 
are very computationally expensive and 
unacceptable in solution of general atmospheric 
circulation problems.  

Now an efficient method has been developed for 
parameterization of molecular absorption 
characteristics – the k-distribution method.1–5 
Initially, the k-distribution method was based on 
band models, and its advantage was in the fact that 
it allowed the transmission function to be represented 
as an exponential series. Evolving, this method 
became free from restrictions connected with the 
model representations, and today it can be considered 
as a modification of the line-by-line method. To 
obtain an exponential series, integral transformation 
of  the  transmission  function of the medium is used4: 
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where k(ν) is the molecular absorption coefficient; L 
is the path length; ν is the wave number, cm–1; k(g) 

can be treated as an absorption coefficient in the 
space of cumulative wave numbers g (Ref. 5). In 
Eq. (1) k(ν) is a rapidly oscillating function, and 
k(g) is a monotonically increasing piecewise continuous 
function. Applying quadrature equations of numerical 
integration to the second integral in Eq. (1), we can 
readily obtain a short exponential series. 

The function k(g) can be calculated based on 
k(ν). For this purpose, it is necessary to find the 
distribution function for values of the absorption 
coefficient g(k): 

 
ν

ν

ν ν
ν ν

2

1
2 1

1
( ) ( )dg k U=

− ∫ ,  (2) 

where 

 
ν

ν
ν

1, ( )
( )

0, ( )

k k
U

k k

<= 
>

. 

It follows from Eq. (2) that g(k) is a monotonically 
increasing function; therefore, inverting g(k), we can 
calculate k(g): 

 k(g) = g
–1

(k), (3) 

where g–1(k) is the inverse function. 
Since k(g) is connected with the distribution 

function of the absorption coefficient, this method is 
referred to in the literature as the k-distribution 
method.  

In our earlier paper,5 it was shown that the k-
distribution method allows molecular absorption to 
be correctly taken into account in solving the 
radiative transfer equation in the scattering and 
absorbing atmosphere through the single scattering 
albedo and the optical depth. The only 
approximation to be fulfilled is correlation of the k-
distribution,7 which allows the optical depth and the 
absorption coefficient to be connected in a natural 
way in the space of cumulative wave numbers:  
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where k(g, h) has the meaning of the absorption 
coefficient at the height h and the cumulative 
frequency g.  

Equation (4) is violated in an inhomogeneous 
atmosphere. This is connected with the fact that the 
distribution function g(k) varies with height. In the 
case of an inhomogeneous atmosphere, Eq. (2) should 
include the optical depth in place of the absorption 
coefficient, and the distribution function of the 
optical depth of the inhomogeneous atmosphere 
differs from the distribution function of the 
absorption coefficient, and the wider is the 
difference, the larger is the error of calculation by 
Eq. (4). 

Now there are no objective criteria for 
applicability of the approximation (4), therefore to 
check it in the studied spectral intervals, it is 
necessary to perform voluminous calculations of the 
transmission function for variations of the vertical 
temperature profiles and the concentration of gaseous 
constituents. 

Reference 6 gives qualitative justification to the 
criterion of estimation of the accuracy in calculation 
of transmission using the approximation (4) for the 
nonisothermal atmosphere based on the applicability 
of the concept of lacunarity of an optical spectrum 
(for estimations of lacunarity of optical spectra see 
Ref. 8). 

In this paper, we study the quantitative 
relationship between the error of calculating the 
transmittance of an inhomogeneous atmosphere by the 
k-distribution method and the spectrum lacunarity. 
To find the quantitative criterion of applicability of 
the k-distribution method to an inhomogeneous 
atmosphere, the model of two-layer nonisothermal 
medium with the layer temperature Òi and the 
thickness Li (i = 1, 2) is used.6 Figure 1 exemplifies  
 

transformation of the absorption spectrum of the 
medium layers in the space of wave numbers and 
cumulative wave numbers. 

The exact T∆ν and approximate (in the 
approximation of k-correlation) Tg values of the 
transmission function were calculated by the 
equations: 
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The coefficients k(g, T1) and k(g, T2) were found for 
each layer by Eqs. (2)–(3), and τ(g) was calculated 
as  
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The error of calculation was determined as 

 νε
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Sup g
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The absorption coefficients for atmospheric CO2 
were calculated in the spectral region of 3450–
3770 cm–1, the line assumed to have the Voigt shape, 
the intensities of spectral lines for the given 
temperatures (300–1000 K) were taken from the 
CDSD database9 (Carbon Dioxide Spectroscopic 
Databank), that was kindly present at our disposal 
by V.I. Perevalov. The spectral resolution varied 
from 10 to 100 cm–1. 

 

 

Fig. 1. Radiation propagation through a two-layer medium. 
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Figure 2 depicts typical dependence of the error 
in calculation of the transmission function by the 
method of k-correlation on the difference between the 
temperature of the first and second layers.  
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Fig. 2. The error in calculation of transmittance for the 
two-layer medium by the k-distribution method as a 
function of the temperature difference between the layers 
(temperature of the first layer is 300 K). Spectral range of 
3500–3600 cm–1. 

 

It can be seen from Fig. 2 that the error increases 
with the increasing temperature difference between the 
layers. Note that the temperature is not a universal 
criterion because this error is largely caused by 
variation of the distribution function of the absorption 
coefficient. Statistical criteria are most adequate for 
estimation of the variability of the transmission 
function. In Ref. 6 it was shown that spectrum 
lacunarity can be such a criterion. The spectrum 
lacunarity is expressed through the first two 
distribution moments of the absorption coefficient 
and characterizes not only the statistical properties of 
the distributions, but also their symmetry (scale and 
translational). 

This paper presents calculations of higher 
lacunarities: 
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Figure 3 depicts the results of lacunarity calculation 
for n = 1, 2, 3 and the spectral range of 3500–
3600 cm–1. 
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Fig 3. Temperature dependence of lacunarity parameters 
Λn(k) calculated for the ÑÎ2 absorption spectrum in the 
range of 3500–3600 cm–1. 

It can be seen from Fig. 3 that the temperature 
dependence of the first three lacunarity moments is 
identical. The similar pattern was observed also for 
lacunarity moments calculated based on the 
distribution function of spectral line intensity. For 
ÑÎ2 in the spectral range of 3450–3770 cm–1 for 
averaging intervals varying from 10 to 100 cm–1, the 
regularities similar to those shown in Fig. 3 were 
observed. For this reason, as the main characteristic 
of temperature variability of the distribution function 
of the absorption coefficient or the distribution 
function of the spectral line intensity, it is possible 
to use lower-order lacunarity Λ1(k). 

Simulation performed by us showed that the 
error in calculation of medium transmittance is 
functionally related to the lacunarity parameter 
characterizing the gas mixture as a whole (Fig. 4). 
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Fig. 4. Dependence of the error in calculation of the 
transmission function on the lacunarity parameters: range of 
3500–3600 cm–1 (a), 3600–3620 cm–1 (b), and 3700–
3710 cm–1 (c). 
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It should be noted that the dependences obtained 
for all the cases were well described by the linear 
regression (the correlation coefficient R was 0.99), 
which is convenient for practical applications. 

Thus, the lacunarity parameter depending on the 
temperature and characterizing the spectrum as a 
multifractal allows one to estimate the error of the  
k-distribution method for multicomponent 
inhomogeneous gas media without performing 
cumbersome line-by-line calculations. 
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