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Processes occurring in a nonlinear ring interferometer (NRI) are described using discrete maps 
in the case of a mono- and double-frequency optical field. The effect of physical factors on the 
stability of modes in the model processes proceeding in the NRI is investigated. Some techniques are 
proposed for interpolation and quantitative analysis of the morphology of the process stability maps 
in mathematical models. 

 

1. Introduction.  
Discrete maps as a language for 
describing the dynamic systems 

A four-mirror interferometer, including a 
nonlinear element, is called a nonlinear ring 
interferometer (NRI). As was demonstrated by Ikeda 
et al. (1979), the delay τ of the optical field as  
it passes in NRI is an important parameter of an 
actual interferometer. The further investigations by 
Akhmanov, Vorontsov, and  Shmalgauzen with their 
colleagues from Moscow State University, as well as 
by Rozanov, and some researchers abroad have shown 
that the following regimes are possible to occur in 
the cross section of a laser beam in the NRI: 
autowaves, generation of static and moving structures, 
optical turbulence, intermittence, and chaos.1 
Therefore, the model of processes in the NRI is one 
of those models that cover numerous phenomena of 
nonlinear dynamics. 

Figure 1 shows schematically the ring 
interferometer containing a thin layer of a nonlinear 
medium, whose refractive index depends on the 
amplitude of the electric field of the incident 
radiation (for example, as in the case of Kerr effect). 
 

 
Fig. 1. Schematic diagram of a nonlinear ring interferometer 
with a two-dimensional feedback: NL is a nonlinear 
element; G is an element converting the field; Iin is the 
intensity of the input light field; Iout is the intensity of the 
output light field.  

The main difference of this NRI from the 
Ikeda's model is that the feedback loop of the NRI 
includes a linear element G providing for point-by-
point field conversion (shift, tilt, turn, expansion, 
compression). Thus, the ray trajectory starting at the 
point with the coordinates (x,y) ends at the point 
(x′, y′) = G(x, y) upon round travel through the NRI. 
 As known, the behavior of dynamic systems can 
be described by evolution equations of the form  

 τ
ndq/dt = N[q(t), q(t – τ)], (1) 

where τ
n is the characteristic relaxation time. 

For example, in the static mode, that is, with no 
changes in time (dq/dt = 0), and if the equation  
N[q(t), q(t – τ)] = 0 can be solved for q(t), model (1) 
is reduced to the recurrence: q(t) = F[q(t – τ)]. 
Then we can pass on to the model describing the 
state of a dynamic system at equidistant time 
moments tn = t0 + τn: 

 qn = F(qn–1). (2) 

The equation of type (2), in the mathematical form, 
is an m-dimensional discrete map (DM), where m is 
the number of vector components.2 

An advantage of the models based on DM is 
that they can be organically implemented on digital 
computers. From the viewpoint of mathematical 
simulation, the use of the DM apparatus (within its 
applicability domain) is advantageous over the finite-
difference schemes employed in solving the Eq. (1). 
Operation with the DMs almost relieves the problems 
typical in solution of differential equations: 
approximation, stability, and errors of numerical 
methods. Owing to these advantages, the DM 
method has become popular in the investigations of 
model nonlinear dynamic systems. 

In the most papers available in literature, the 
processes in the NRI are simulated for a particular case 
of single-frequency radiation. For the model to be more 
realistic, assume that double-frequency (bichromatic) 
radiation is entered into the NRI. This situation has 
been considered only in the most recent papers.3,4 
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Within thus stated problem, it is reasonable to 
expect some new features in the complex dynamics of 
the processes in the model under the assumptions 
accepted. This, in turn, will extend our understanding 
of optical nonlinear ring systems. Besides, the 
application of the DM apparatus allows one to 
describe nontrivial phenomenon of deterministic 
spatial chaos.5 This apparatus is also promising for 
nonlinear dynamic information safety systems as 
applied to data transfer (in the static mode) and 
storage. 

The aim of this paper is to describe the NRI 
processes using the DM language for the cases of 
monochromatic and bichromatic optical fields in the 
approximation of high loss, as well as to study the 
effect of physical factors on the stability of modes in 
the corresponding model NRI processes. 

To reveal the type of dynamics, let us have a look 
at the calculation of the Lyapunov characteristic 
exponents (LCE), which serves a quantitative 
measure of process instability. Having known the 
LCE, one can readily determine the fractal dimension 
of an attractor, entropy of a dynamic system, and the 
characteristic predictability time of the system 
behavior.6 

2. Study of modes in model processes 
in the NRI based on discrete mapping  

For identifying the stability of dynamic modes 
and revealing the effect of physical factors, the so-
called LCE maps were drawn in the coordinates of 
model parameters. 

2.1. Discrete mapping as a model of processes 
in the NRI: the case of monochromatic 

radiation 

The considered model of the optical system with 
a two-dimensional feedback accounts for the 
dependence of the refractive index on the squared 
strength of the optical field and for the interference 
of light fields. Therefore, the nonlinear phase incursion 
U, rather than intensity is a representative dynamic 
variable. From the differential equation describing 
the dynamics of U (in the approximation of high loss, 
when the propagation of a light wave in the 
interferometer is considered in the geometric-optics 
approximation3) for the case of a single-frequency 
field constant both in time and in the cross section 
plane xOy, practicing the approach described in 
Sect. 1, one can obtain a discrete map of the 
following form: 

 
[ ]
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(3)

 

Here K is the coefficient of nonlinearity; γ is the 
doubled coefficient of radiation loss for an NRI path; 

Φ is the linear phase incursion in the interferometer 
feedback loop.  

The results obtained by simulation (3) are 
shown in Figs. 2, 3, and 4. 

The dependence Λ(K) is nonmonotonic, and it 
experiences sign alternation or takes zero values (see 
Fig. 2). According to the theory, this behavior 
corresponds to the alternation of modes (bifurcations). 
As known, different bifurcations of the states  

occur just at Λ = 0 or Re(Λ% ) = 0 (in the process of 

calculation of Λ%  as Jacobian's eigenvalues, that is, 
the matrix of linearization). 

 

 

a 

 

b 

Fig. 2. LCE dependence on the nonlinearity parameter K 
under different initial conditions: U0 = 0.1 (a) and 2 (b). 

 

 

Fig. 3. LCE map in the coordinates K – U0 (γ = 0.5). 

 

Actually, from the comparison of the structure 
of bifurcation diagrams (BDs) (see Fig. 5) and the 
plot Λ(K) in Fig. 2, it can be seen that the points 
with Λ = 0 correspond to the BD singular points, at 
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which bifurcations occur. Thus, the correspondence of 
the points with Λ = 0 to the bifurcation points 
indicates that the obtained dependence is 
mathematically correct. 

Note that the first equation in Eq. (3) is, 
essentially, the initial condition for this system. 
Besides, note that Λ(K) depends on U0. To reveal the 
effect of U0, we have drawn the LCE map in the 
coordinates K – U0 (Fig. 3). Actually, it reflects the 
dependence of the presence (absence) of stability of 
the steady-state mode on the initial state U0. 

As a further development of this approach, 
combine the LCE maps for DM with BDs of static 
states U for ordinary differential equations. This 
proves to be methodically a rather efficient approach, 
which facilitates morphological interpretation of 
maps and explains the presence of regular (light areas 
in Fig. 6) or chaotic (dark areas) dynamics in the 
model. 

 

 
a 

 

b 

Fig. 4. LCE maps in coordinates K – γ (a), K – Φ (b). 
Light areas correspond to negative Λ. 

 
Thus, if the BDs include steady states (bold 

lines), then in the LCE map they correspond to the 
areas of the initial conditions, belonging to them, 

that result in a regular behavior of the system. The 
dependence Λ(U0) has the period 2π (Fig. 3). The 
correctness of the approach based on the joint 
analysis of the map and BDs assumes drawing as 
many as possible BDs for different number of 
ordinary differential equations. 

As a further development of analogy of the 
descriptions that use ordinary differential equations 
(ODEs) and DMs, point out that the structure of the 
LCE map for DM (Fig. 4b) is conditioned by the 
structure of the family of bifurcation lines for the DE 
(Fig. 7). In Fig. 5, between the nearest pairs of lines 
1 and 4, 2 and 3, there are stable parts of the 
branches (corresponding to the states U1 = U2) of 
the bifurcation diagrams, which are independent of 
the number of equations m. It can easily be seen that 
the structure of the maps copies the configuration of 
the areas between the bifurcation lines.  

 

 

a 

 

b 

Fig. 5. Bifurcation diagrams of static states of the nonlinear 
phase incursion at τ = τn for m = 1 (a) and 2 (b). Bold lines 
stand for the states steady at any τ, ordinary lines are for 
the states steady at given τ, and thin lines are for the 
unsteady states. 

 
The found elements of similarity in the structure 

of the LCE maps for different situations, as well as 
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the similarity with the results obtained earlier for the 
model based on ODEs, evidence the appropriateness 
of describing the processes in the NRI using DMs. 

 

 

Fig. 6. Combination of "contrast" maps (sgn(λ)) on one 
plane with the bifurcation diagram (BD) of the static states 
U for four ordinary differential equations. 

 

 

Fig. 7. Bifurcation lines Φ = ωt0, that is, bifurcation 
parameter Φ as a function of the nonlinearity coefficient K. 
The value of Φ is normalized to the range [0; 2π], m = 2: 
discontinuous bifurcations of the appearance of a new 
steady-state solution (1) (1); discontinuous bifurcations of 
the disappearance of an old steady-state solution (1) (2); 
bifurcation of the acquiring stability (3); bifurcation of 
loosing stability (4). 

 

2.2. The case of bichromatic radiation  

 

Let the optical field at the NRI input consist of 
the components with the amplitudes a and b and the 
frequencies ω + Ω and ω – Ω (Fig. 8). 

In accordance with the goal of this paper, 
consider now the double-frequency case, for which 
we can expect qualitative changes in the maps. 
Checking the correctness of this assumption and 
proceeding by analogy with derivation of Eq. (2), we 
can easily construct the DM for this case 

 Ui+1 = K {1 + γ{Qa cos [(1 + q) (Φ + Ui)] + 

 + (1 – Qa) cos [(1 – q) (Φ + Ui)]}},  (4) 

where Qa is the fraction of intensity for the 
component with the frequency (1 + q) ω; q ≡ Ω/ω is 
the parameter of bichromaticity, which characterizes 
the interval between the spectral components 
(Fig. 8); Φ is the linear phase incursion at the 
frequency ω in the NRI feedback loop. 

 

 

 Fig. 8. Spectrum of bichromatic radiation. 

 

Figure 9 gives an idea of the structure of the 
LCE maps in the plane K – U0 at a relatively large 
(0.5) deviation of the parameter q from the value 
corresponding to the field monochromaticity. 

Figure 10 demonstrates qualitative changes in 
the maps due to the appearance of the second 
component in the spectrum of the input optical field. 
 Because of specific differences in the description, 
comparison, and analysis of the morphology of maps, 
it is quite logical to look for some relatively 
objective quantitative characteristics of a map as a 
whole. In our opinion, for making a comparison of 
LCE maps with each other, the total area of regions, 
in the parameter space, corresponding to the positive 
LCE values (dark regions in the "contrast" maps) can 
serve such a characteristic.  

The change in the ratio of the dark and light 
areas in the maps of Λ(K, γ) while varying the 
parameters q, Qa is depicted in Fig. 11. Each of these 
dependences is nonmonotonic and includes a 
pronounced extreme near q = 0.16 (Fig. 11a) and 
Qa = 0.34 (Fig. 11b). 

A more systematic morphological interpretation 
of these tendencies calls for an independent study 
and is beyond the scope of this paper. 
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 a b 
Fig. 9. Bichromatic case, LCE map in the coordinates K – U0 (a), combination of the "contrast" map (sgn(λ)) with the BD 
of static states (b). 
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 d e f 
 Fig. 10. LCE maps in the coordinates K – γ, Qa = 0 (a), 0.17 (b), 0.35 (c), 0.52 (d), 0.73 (e), 0.99 (f). 

   
 a b 

Fig. 11. Total area of the regions corresponding to positive LCE values (for the maps in the coordinates K – γ). 
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Conclusion 
 

The processes proceeding in the NRI have been 
described in the DM language for the cases of single- 
and double-frequency field in the approximation of 
high loss. The effect of physical factors on the 
stability of modes in the corresponding model 
processes proceeding in the NRI has been studied. 
For this purpose, we have drawn a set of LCE maps, 
that is, the distributions of the LCE values in the 
planes of pairs of the model parameters and in the 
plane "nonlinearity parameter – the initial condition." 

It has been found that the structure of the maps 
change qualitatively with the second spectral 
component introduced in the radiation at the NRI 
input. 

The technique has been proposed for 
interpretation of the LCE maps drawn. This technique 
is uses BDs and bifurcation lines obtained for the 
model using ordinary differential equations. Their 
mutual conditionality was revealed, which indicates 

the appropriateness of using the discrete maps. 
To facilitate the morphological analysis of the 

maps, it has been proposed to apply to the maps the 
BDs constructed for the ODEs. 

For quantitative characterization of the LCE 
map, it has been proposed to use its fraction 
corresponding to the unsteady-state mode. 

The results obtained are of interest for 
atmospheric adaptive optics, whose instrumentation 
includes NRIs.7 
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