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We present here a theoretical treatment of the nonlinear effect that occurs 

when the atoms scattering the light are disturbed by foreign particles that fly upon 

them from one side.  We show that a quasi-constant multipole moment is induced in 

these atoms because of the anisotropy of such a medium. The interaction between 

this moment and the external radiation should yield the harmonics of the 

fundamental frequency in the spectrum of scattered radiation. 

 
In this paper we study  theoretically the nonlinear 

effect that takes place when light-scattering atoms are 
disturbed by  particles flying upon them  mostly from 
one side.  Such a situation can be observed, for 
instance, when an atomic ensemble is irradiated by an 
electron beam. 

It is obvious that, if the disturbing particles move 
along a preferred direction, the atomic shells are 
deformed mostly from one side.  As a result, the 
multipole moment should be induced in atoms, and its 
ensemble-averaged value must  differ from zero.  If the 
medium of such atoms is irradiated with a coherent 
radiation the polarization plane of the latter may rotate 
due to the interaction with the multipole moment.  
Moreover, under certain conditions, the radiation  may, 
in addition, change its frequency. Let us consider this 
question in a more detail. 

The main problem that arises when trying to  take 
into account some anisotropy of the environment 
(below, we treat it as a thermostat with Markov 
stochastic properties) is how one should introduce 
corresponding operators into the Schrödinger or 
Neumann equations.  Such operators should take into 
account not only anisotropy of the medium, but  the 
collision nature of the interaction between the atoms 
and disturbing particles as well. 

For this purpose, we use the method which is 
based on averaging the wave functions over the 
influence from the thermostat already at the stage of 
constructing the Schrödinger equation.1,2 We construct 
equation for the ψ-function using the  method of  
integrals over the Feynman3 paths, in which the 
propagator is averaged over all possible virtual paths in 
the medium surrounding the  quantum subsystem 
considered.  In the general case this equation is 
nonlinear.  However, a solution to it can be obtained 
only if we take into account some relations valid for 
the wave functions ψ(r, t) satisfying it. These relations 
are as follows: 

 

ψ(r, t) = ψ∼(r, t)/ <ψ∼(r, t)⏐ψ∼(r, t)> ; (1) 
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Here, Ĥ is the Hamiltonian of an undisturbed 
atom; U is the potential energy operator; A and E are 
the vector potential and the intensity of the electric 
component of the external electromagnetic field; d is 
the dipole moment of the atom; e and m are the 
electron charge and mass. Besides, Eqs. (2) and (3) 
contain two non-negative parameters α and i. The 
larger the thermostat density, the larger are their 
values. The vector V describes the velocity of the 
directed drift of an individual atom with respect to the 
ambient medium. In the general case V may depend on 
time. 

The velocity of a quantum subsystem (atom) with 
respect to the thermostat, entering the above 
expressions, allows one to take into account the 
thermostat anisotropy, or in other words the presence of 
a preferred direction of the particle ensemble motion.  
Indeed, from the mathematical viewpoint, it  
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makes no difference whether the considered quantum 
subsystem moves in the thermostat or the thermostat 
particles move with respect to it.  The presence of a 
preferred direction from which disturbing particles fly 
upon an atom can lead, as it was already noted, to 
inducing an additional multipole moment in atoms. 

Let us find it.  For clearness, let us restrict 
ourselves by a two-level approximation. 

We assume that a system of atoms of the same 
kind that  interact with a thermostat is irradiated by a 
monochromatic radiation with the frequency  close to 
the frequency of a quantum transition from the second 
level to the first one 

 

e(R, t) = e0 cos(ωt $ K R), (4) 
 

where e0 is the field amplitude (we assume that it has 
a fixed direction); ω is the frequency; K is the wave 
vector; R is the radius-vector of the atom. 

The solution of the equation for the auxiliary 
function ψ1(r, t), in the resonance approximation, has 
the following form: 

 

ψ1(r, t) = (C1 exp (β1t) + C2 exp (β2t)) × 
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Here ψi(r) (i = 1, 2) are the coordinate eigenfunctions 
of the upper and lower atomic levels.  The constants Ci 
are determined by the initial conditions.  The values βi 
are approximately equal to 

 

β1 ≈ (iε $ γ21)/2 + iΩ $ εγ21/4Ω; (6) 
β2 ≈ (iε $ γ21)/2 $ iΩ + εγ21/4Ω. (7) 

 

In Eqs. (6) and (7), ε is the frequency detuning 
 

ε = ω $ (E2 $ E1)/�, (8) 

 

γ21 is the parameter equal to the difference 
 

γ21 = α (E2 $ U22)/� $ α (E1 $ U11)/� . (9) 

 

In what follows, we assume that no exact resonance 
occurs (| ε | >> | γ21 |), but the frequency detuning is 
sufficiently small: | ε | << ω21), Ω is the Rabi frequency 
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The substitution of the wave function ψ(r, t) into 
the expression for the average dipole moment of the 
considered atom 

<d(t)> = <ψ(r, t) | d | ψ(r, t)> = 

= <ψ∼(r, t) | d | ψ∼(r, t)>/<ψ∼(r, t) ψ∼(r, t)>  (11) 

 
under condition that α is considerably less than unity 
and the duration of the external light action essentially 

exceeds the value 
1

|γ21| leads to the following expression: 
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When deriving formula (12) we assumed that the 
vectors r21 and E0 are parallel.  The value Fn is defined 
by the relation 

 

Fn = i2� βn/e(E0 r12), (13) 
 

where the parameter n takes the values 
 

n = 1 for ε > 0, γ21 < 0; ε < 0, γ21 > 0; (14) 

n = 2 for ε > 0, γ21 > 0; ε < 0, γ21 < 0. (15) 

 

The additional phase ϕ introduced into the cosine 
argument, in the denominator, is determined by the 
ratios between r12 and Fn.  Besides, the matrix 
elements (rr)ij = <ψi⏐rr⏐ψj> have been introduced into 
Eq. (12). 

By multiplying <d(t)> by the concentration of 
atoms nearby the point R, one can obtain the 
polarization of a unit volume of the medium. 

The summand standing in the numerator and 
proportional to α is responsible, first, for the effects as 
rotation of the polarization plane of  scattered 
radiation4 and it is unimportant for this study. So we 
do not take it into account in what follows.  This 
makes it possible to write Eq. (12) in the form 
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=
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.(16) 

The numerator in the Eq. (16) describes the dipole 
moment induced by the resonant radiation in a separate 
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atom,5 accurate to a factor close to unity. The 
denominator involves an additional summand that 
appeared here due to the assumption that the atom is in 
an anisotropic thermostat. This summand depends not 
only on the average drift velocity of the considered 
system with respect to the thermostat but also on the 
parameters of external radiation. By expanding <d(t)> 
into a series over the powers of the parameter α 

 

<d(t)> = α0 <d(t)>0 + α1 <d(t)>1 + 

+ α2 <d(t)> 2 + ..., (17) 

 

one can easily see that the series terms  contain 
harmonics of the external radiation.  The most 
significant term is α<d(t)>1: 

 

α <d(t)>1 = α (er12 F*
n exp ($ iωt + iKR) + 

 

+ er21 Fn exp (iωt $ iKR)) 2m⏐(Vr21) Fn⏐× 
 

× cos(ωt $ KR + ϕ)/[� (1 + ⏐Fn⏐2)2]. (18) 

 

It is easy to see that the value (18) differs from 
zero if the angle between the vectors V and E0 is not 
equal to π/2, the value α<d(t)>1 being maximal when 
the vectors are parallel.  This means that the scattered 
radiation should contain the component with the 
doubled frequency of the incident radiation. This 
frequency doubled wave must propagate along the same 
direction as the incident one.  Its amplitude depends on 
atom concentration, parameter α (i.e., on the 
thermostat density), and on the velocity V.  Since the 
induced dipole moment of the atom at the doubled 

frequency differs from that at the fundamental 
frequency of α<d(t)>1 by the factor 

 

μ = α 2m⏐(Vr21) Fn⏐/[� (1 + ⏐Fn⏐2)], (19) 

 

it can be easily determined. 
The substitution, into Eq. (19), of the parameters 

that are close in their values to real ones shows  that 
the following estimate of μ: 

 

μ ≈ 102 α ⏐V⏐/c (20) 
 

is valid. 
According to Eq. (20), in the case when the 

thermostat is sufficiently dense (α ≈ 10$3$10$2) and the 
velocity of the directed motion of the ensemble of 
particles disturbing the atom is commensurable with the  
speed of light, the dipole moment of an atom at the 
doubled frequency is close to the "resonant" value.  
This points to the fact that the effect of frequency 
doubling may be sufficiently strong to be detectable  in 
experimental observations. 
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