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The behavior of the gain of dye lasers with polarization anisotropic cavities is 

theoretically investigated.  In the stationary approximation, the spectral and 

polarization characteristics of the gain are calculated for two regimes of laser 

operation: with broadband and narrow-band cavities.  It is shown that gain 

anisotropy of linearly polarized radiation is frequency dependent, that is, it 

exhibits dichroism.  It is established that this effect is caused by the overlap of the 

dye emission and absorption bands and depends on the laser parameters: pumping 

rate and Q-factor of the cavity.  In addition, for a narrow-band tunable laser the 

dependence of dichroism of the gain on the tuning frequency has been established. 

 
Polarization of the pulsed radiation of dye lasers 

(DLs) with flash-lamp pumping is most often used for 
minimization of losses on reflection from edges of 
various intracavity elements used to control over a 
generation spectrum.  This circumstance connecting in 
practice the polarization and spectral characteristics of 
DL calls for their joint examination when studying the 
generation processes in these lasers.  However, in the 
investigations of the DL polarization characteristics 
carried out previously, only a single-frequency 
approximation was used, which cannot give a 
comprehensive idea of the specific features of the gain 
of their active media with wide overlapping bands of 
absorption and emission.  Therefore, this paper is 
devoted to a theoretical analysis of spectral properties 
of the DL gain with polarization-anisotropic cavity. 

To solve the formulated problem, we proceeded 
from the fact that in general, when modeling the dye 
molecule as a linear oscillator, common for the 
absorption and emission, the gain can be described by 

the formula5 

 

Kg(t, ψ, ν) = 3σem(ν) ⌡⌠    ⌡⌠ n2(t,θ,ϕ) sinθ cos2ξ dθ dϕ $ 

$ 3σab(ν) ⌡⌠    ⌡⌠ n1(t,θ,ϕ) sinθ cos2ξ dθ dϕ, (1) 

 
where t is the time; ν is the frequency; ψ is the angle 
specifying the sense of polarization vector of the 
radiation flux in the laboratory system of coordinates; θ 
and ϕ are the spherical coordinates specifying the 
direction of the oscillator axis; n1(t, θ, ϕ) and 
n2(t, θ, ϕ) are the distribution functions of molecules 
over their orientations in the ground and excited states, 
respectively; σem(ν) and σab(ν) are the emission  

and absorption cross sections of the molecule; ξ is the 
angle between the molecular oscillator and the electric 
vector of the radiation component 

cosξ = sinθ sinϕ sinψ + cosθ cosψ. 

To write Eq. (1), we used a simplified scheme of 
two-electron molecular energy levels: the ground level 
with population density n1(t, θ, ϕ) and the first singlet 
excited level with population density n2(t, θ, ϕ).  The 
process of DL generation in this approximation is 
described by the system of generalized kinetic equations 

 

dU(t, ψ, ν)
dt

 = (cl/L) U(t, ψ, ν) × 

× [Kg(t, ψ, ν) $ Kl(ψ, ν)] + G(t,ψ,ν), (2=) 

 

dn2(t, θ, ϕ)
dt

 = W(t) n1(t, θ, ϕ) $ n2(t, θ, ϕ) × 
 

× 
⎣
⎡

⎦
⎤τ$1

s ⌡⌠ 3 σem(ν)⌡⌠ U(t, ψ, ν) cos2ξ(ψ)
 
dψ

 
dν  + 

 

+ n1(t, θ, ϕ)⌡⌠ 3 σab(ν)⌡⌠ U(t, ψ, ν) cos2ξ(ψ) dψ dν,  (2b) 

 

n2(t, θ, ϕ) + n1(t, θ, ϕ) = N/4π, (2c) 

 

where U(t, ψ, ν) is the number density of emitted 
photons, c is the light velocity, l is the length of the 
active medium, L is the cavity length, Kl is the loss 
factor for the radiation component ψ, W(t) is the 
pumping rate, τs is the lifetime of the excited state, N 
is the molecule concentration in the solution, 
G(t, ψ, ν) is the luminescence power of a unit volume 
of solution along the cavity axis. 
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Further the problem was solved in the stationary 
approximation.  In so doing, it was generally assumed 
that dn2(t, ϕ, θ) = 0 and that stationary generation is 
excited for the component with ψ = 0.  In this case, 
within the time over which the pulse acts, the 
following condition is satisfied for this component: 

 
Kg(0, νg) = Kl(0, νg). (3) 

 
Hence 

 

⎩
⎨
⎧Ug = U(0, νg) ≠ 0,

U(ψ ≠ 0, ν = νg) = 0
 

 
and then Eq. (2b) with consideration of Eq. (2c) takes 
the form 
 

(N/4π) [W + 3c σab(νg) cos
2θ] $ n2(θ, ϕ) {W + τ$1

s  + 
 

 + 3c [σab(νg) + σem(νg)] Ug cos
2θ} = 0. (4) 

 

Let us assume that 3c σab(νg) cos
2θ << W << τ$1

s .  Then 
 

n2(θ, ϕ) = W N τs/4π [1 + 3 τs c σem(νg) Ug cos2θ]. (5) 

 
By substituting Eq. (5) in Eq. (1) and integrating, we 
derive 
 

Kg(0, ν) = 3 W N σem(ν) τs × 

× [1 $ (arctan a)/ a]/a $ N σab(ν), (6) 
 

Kg(π/2, ν) = 3 W N σem(ν) τs × 

× (arctan a)/2 a $ [Kg(0, ν) + 3 N σab(ν)]/2, (7) 

 

where = = 3c σem(νg) Ug τ
$1
s  is the ratio of the 

probability of induced transitions to the probability of 
spontaneous transitions.  The parameter a can be 
estimated if we consider that from condition (3) the 
equation follows: 
 

[1 $ (arctan a)/ a]/a = [N σab(νg) + 
 

+ Kl(0, νg)]/3 W N σem(νg) τs ≡ A(νg). 
 

A comprehensive idea of the character of the gain 
gives the relation 

 

Kg(ψ, ν) = Kg(0, ν) cos
2ψ + Kg(π/2, ν) sin2ψ. (8) 

 

In order that with the help of Eqs. (6), (7), and 
(8) to calculate the dependences of the gain from ψ and 
ν and to analyze its change attendant to variations of 
the DL parameters, the generation frequency νg should 
be known.  In connection with this, we consider 
separately two regimes of DL operation: with the 
broadband cavity and with the dispersion cavity.   

To determine νg of the DL with the broadband 
cavity, we take advantage of the fact that generation in 
this case occurs at the frequency for which the 
condition 

 

dKg(0, νg)/dν = 0 (9) 

 
is satisfied.   

Together with Eqs. (3) and (1), this condition 
permits us to write down the system of equations from 
which νg can be determined 

 

3 σem(νg) ⌡⌠    ⌡⌠ n2(θ, ϕ) sinθ cos2θ dθ dϕ $ N σab(νg) = 

 

= Kl(0, νg), 
 

⌡⌠    ⌡⌠ n2(θ, ϕ) sinθ cos2θ dθ dϕ (dσem/dν) $ 

$ N (dσab/dν) = 0. (10) 

 
In so doing, the profiles σem(ν) and σab(ν) can be 

approximated by the formulas6 
 

σem(ν) ≈ σ em
max

 exp {$ ln2 [2 (ν $ ν
f
0)/Δν]2}, 

σab(ν) ≈ σem(ν) exp [h (ν $ ν00)/kT, (11) 

 

where σ em
max

 is the maximum value of σab(ν), ν
f
0 is the 

frequency of maximum σem(ν), Δν is the halfwidth of 
the profile σem(ν), h is the Planck constant, ν00 is the 
frequency of pure electron transition, k is the Bolzmann 
constant, and T is the temperature.  Solution of the 
system of equations (10) with the use of approximation 
(11) gives 
 

νg = {[h/kT + (8 ν
f
0 ln2)/(Δν) + 1/Δν] $ 

 

$ {[h/kT $ (8 ν
f
0 ln2)/(Δν)2 + 1/Δν2] 2 $ 

 

$ (16 ln2) [hν00/kT + (4 ν
f 2
0  ln2)/(Δν)2 + 

 

+ ν
f
0/Δν + ln(Kl(0, νg) kT 8 ln2)/Nσem hΔν + 

 

+ 1]/(Δν)2}1/2} (Δν)2/8 ln2 . (12) 
 

In the derivation of Eq. (12) it was assumed that 

(νf
0 $ ν)/Δν < 1.  Formulas (6)$(8) and (12) can be 

used to calculate Kg(ψ, ν) directly, thereby analyzing 
the character of the gain of the medium.  
Corresponding analysis was made and gain anisotropy 
was established, as expected; however, in contrast with 
the single-frequency approximation, it became clear 
that the maximum of Kg(ψ, ν) is achieved at the 
frequency νmax ≠ νg.  Moreover, for each component ψ, 
νmax was different.  The frequency νmax can be 
determined from the condition dKg(ψ, ν)/dν = 0.  
Using Eqs. (6)$(8) and approximation (11), we find 
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νmax(ψ) $∼ ⎣
⎡

⎦
⎤

ln 
F(ψ) kT 8ln2

hΔν  + 
hν00

kT
 + 

ν0
f

Δν $ 1  × 

 

× ⎝
⎛

⎠
⎞h

kT
 + 

1
Δν

 $1

, (13) 

 
where 
 

F(ψ) = 3W τs × {A(νg) cos
2ψ + [B(νg) $ A(νg)]/2}; 

 

B(νg) = (arctan a)/ a. 
 
The frequency dependence of the gain anisotropy, 

or in other words, gain dichroism is clearly 
demonstrated by the dependences νmax(ψ) and 
Kg(ψ, λmax)/Kg(0, λg) shown in Fig. 1.  Here and 
further we bear in mind that λ = c/ν.  These 
dependences were calculated for the laser on rhodamine 
6G with the following values of the molecular 

parameters: σmax
em  = 1.85⋅10$16 cm2, τs = 7.4 ns, 

ν00 = 5.45⋅1014
 Hz, νf

0 = 5.26⋅1014
 Hz, and Δν = 8⋅1013 Hz.  

Calculations were done for two rates of pumping and 
two values of the parameter Kg(0, νg)/N to 
demonstrate the dependence of the dichroism on the Q-
factor of the cavity and the pumping rate.  From Fig. 1 
it can be seen that the frequencies of maximum gain for 
each ψ are different and significantly detuned from νg.  
The maximum shift νmax occurs at ψ = π/2.  The 
decrease of the cavity losses or the increase of the 
pumping rate increases the shift νmax and anisotropy of 
the gain. 

 

 
 

FIG. 1.  Broadband cavity.  Dependence of λmax 
(curves 1, 1′ and 2, 2′) and H (curves 3, 3′ and 4, 4′) 
on ψ. Kl/N = 10$20

 

 (1, 1′, 3, 3′) and 1 0$19 “m2 (2, 2′, 
4, 4′); W = 3⋅106 (1$4) and  7⋅106 s$1  (1′$4′). 
 
 
 

All problems discussed above refer to the general 
case in which the absorption and emission spectra of 
the dye overlap, that it, σab ≠ 0.  If they do not 
overlap, then, as our calculations have shown, the 
frequency dependence of anisotropy does not arise and 
hence gain dichroism is absent.  In this case, only gain 
anisotropy is observed which can be described, in 
analogy with the polarization degree, by the degree of 
anisotropy D defined as 

 

D = 
Kg(π/2, ν) $ Kg(0, ν)

Kg(π/2, ν) + Kg(0, ν)
 . 

 

Then 
 

D = 
3β arctan a/ a $ 3

3β arctan a/ a + 1
 , (14) 

 

where β = W/Wt is the excess of pumping rate W 
over the threshold Wt.  It can be seen that the degree 
of gain anisotropy depends on the amount of excess of 
pumping over the threshold.  The curve D(β) is shown 
in Fig. 2, from which it can be seen that with the 
increase of the amount of threshold excess the degree of 
gain anisotropy is increased. 

Now let us examine the DL with dispersion cavity.  
In this case, the generation frequency νg is determined 
by a dispersion element inserted in the cavity, and in 
general is not equal to the frequency of the gain 
maximum for generated polarization mode νmax(ψ = 0).  
Therefore, to analyze the character of Kg(ψ) in this 
regime, formulas (6)$(8) and (13) are also applicable 
considering that νg is no longer dependent on the laser 
parameters and is specified arbitrary. 
 

 
FIG. 2.  Dependence of the degree of anisotropy D on 
the excess of pumping rate β at σab = 0. 
 

The results of calculations have shown that the 
behavior of Kg(ψ, ν) for DL with dispersion and 
broadband cavities is similar.  In particular, dichroism 
of the gain exists.  The main distinction is that along 
with the dependence on the Q-factor of the cavity and 
on the pumping rate the dependence arises on the 
frequency of detuning of the dispersion cavity.  This is 
vividly illustrated by Figs. 3 and 4. 
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FIG. 3.  Dispersion cavity.  Dependence of λmax on ψ 
for λg = 615 (1, 1′), 600 (2, 2′), and 585 nm (3, 3′); 
W = 3⋅106 (1, 3) and 7⋅106 s$1 (1′$3′). 

 
 

FIG. 4. Dispersion cavity.  Dependence of the gain 
anisotropy H on ψ for λg = 615 (1, 1′), 600 (2, 2′), 
and 585 nm (3, 3′).  
 

Figure 3 shows the dependences λmax(ψ) 
calculated for three different λg for laser on 
rhodamine 6G and for two different pumping rates.  
In our calculations we assumed that  

Kl(0, νg)/N = 10$20 cm$2. As for DL with broadband 
cavity, λmax is decreased with the increase of ψ so 
 

that the condition λmax(π/2) < λmax(0) is always 
valid. However, this decrease of λmax is different for 
different wavelengths of cavity detuning λg.  Its 
magnitude decreases for shorter generation 
wavelengths, which is connected, like the resultant 
effect of gain dichroism, with the magnitude of 
σab(λ).  The same is true for the gain anisotropy, as 
show the dependences H=Kg(ψ, λmax)/Kg(0, λg) for 
different λg in Fig. 4. 

Thus, on the basis of our analysis we can draw 
the following conclusions.  In the active medium of 
DL generating polarized radiation in the presence of 
re-absorption of emitted radiation by unexcited 
molecules, gain dichroism arises.  The degree of gain 
anisotropy and the frequency shift of the gain 
maximum that characterize this effect for each 
component ψ depend on the Q-factor of the cavity 
and the pumping rate.  This is true for DLs with 
broadband and dispersion cavities.  For the DL with 
dispersion cavity, the dependence of dichroism on the 
wavelength of cavity tuning is also added. 

In the absence of re-absorption in the medium, 
the frequency dependence of gain anisotropy vanishes, 
which means the absence of dichroism in this case. 
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