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For microwave radiation in the wavelength range λ = 1–10 cm, the possibility of creating a 

non-stationary waveguide channel from conducting nanoparticles is shown at the concentration of 
nanoparticles in air equal to 1 g/m3. The estimates show that 1–10 kg of nanoparticles is enough for 
creation of a channel with the length of 100 m. The power range of the transmitted radiation 
depends on how ellipsoidal are the particles. For strongly prolate nanoparticles, ignition of the wave 
channel under certain conditions is possible. 

 
Waveguides with a light transmitting core and a 

transparent cladding have gained wide technological 
application in recent years.1 Both the core and the 

cladding are dielectrics, that is, such waveguides have 
no conducting parts. The radiation is localized in a core 

because the dielectric constant of the core is higher 
than that of the cladding. For example, in the case of 
a waveguide for the radiation in the visible region, 
the relative difference between the dielectric constant 
of the core and the cladding is (2– 3) ⋅ 10–3. Such a small 
difference between the refractive indices of the core and 

the cladding means that a small amount of substance 
with higher constant shaped as long cylinder in a 
homogeneous medium of other kind forms a waveguide 
channel. Let air be a homogeneous medium, and 
dielectric nanoparticles be another one substance. To 
achieve the effect, we estimate the optimal concentration 
of particles in a waveguide channel. It should be noted 
that a stable volume formation of nanoparticles is 
needed for creation of a stationary or quasistationary 

waveguide channel. The quasistationary waveguide 
channel can be created by a vortex. For this case, it 
is needed to estimate the vortex lifetime. 

Consider the problem formulated. Assume that 
nanoparticles with the radius R and the dielectric 

constant ε2 are sprayed in a long air cylinder L of radius 

ρ0. The dielectric constant of the gas medium is ε1 
(for air ε1 = 1), and the concentration of nanoparticles is 
much less than that of air molecules. In this case, the 
dielectric constant of the mixture εm is [Ref. 2, p. 69]: 
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where v = (4π/3)R3 is the nanoparticle volume; n is 
the concentration of nanoparticles. If nanoparticles are 
uncharged conductors, we should assume ε2 → ∞ in 
Eq. (1). Then 

 εm = ε1 + 3nvε1. (2) 

Consider the case of nv = 10–3 (this corresponds 
to the averaged nanoparticle density of 1.7 kg/m3). 
Suppose that the concentration of nanoparticles in 
the cylinder is independent of coordinates. Then the 

refractive index of the medium n = ε%  is a stepwise 
function: 
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where ε2 → ∞ for nanoparticles (here nco and ncl are 
the refractive indices of, respectively, the core and 
the cladding of the waveguide). 

Depending on ρ0 and the wavelength λ, the 
waveguide (3) can transmit one or more modes. The 
initiated modes can propagate to long distances 
virtually without loss. 

Determine now ρ0 for the unimodal conditions 
and estimate the fraction of the radiation power 
accounted for by the launched mode, as well as assess 
the waveguide length L for c = nv = 10–3. Introduce 
the optical volume  

 = ρ ∆ ≡ ρ −2 2
co co0 0 cl2 ,V n k k n n  (4) 

where k = 2π/λ, λ is the wavelength of electromagnetic 
radiation; ∆ = const. The unimodal conditions of the 
waveguide are determined from the condition 
0 < V ≤ 2.405 [Ref. 1, p. 272]. At V → 0 the launched 
mode accounts for a small fraction of power, since in 
this case the modal spot tends to infinity, and at 
V → 2.405 another launched mode appears. Therefore, 
the optimal condition is V ≈ 1 (see Appendix). In 
this case, from Eq. (4) we obtain 
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 ρ = λ π −2 2
co0 cl/(2 )n n . (5) 

Assume that graphite of weight m = 1.7 kg is 
sprayed (graphite density ρg = 1.7 ⋅ 103 kg/m3). Then 
the length of the waveguide channel L is  

 2

0/( ),L = Λ πρ    (6) 

where Λ = m/(nvρg) = 106 cm3; ρ0 is measured in 
centimeters. 

Let λ = 1 to 10 cm. Then, according to Eq. (5), 
at nv = 10–3 we obtain the core radius 0ρ  (radius of 

the waveguide channel) equal to 2.9 to 29 cm, and 
the length of the waveguide channel L ranges within 
379 to 3.79 m. 

One of the ways to make the waveguide channel 
stable is to induce vortical rotation of the waveguide 
channel with nanoparticles. In this case, the waveguide 
properties of such a channel almost do not change, 
but the system becomes much more stable (Ref. 3, 
p. 143). Estimate the characteristic lifetime of the 
vortical channel τ. Assume the linear velocity of points 
in the rotating waveguide channel to have only the ϕ-
component; the gas is incompressible. Then from the 
Navier–Stokes equation we have for the ϕ-component 
of the velocity v: 
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Suppose that vϕ varies by the exponential law: 

 vϕ ∼  exp (–t/τ).   (8) 

From Eqs. (7) and (8) we obtain vϕ, which satisfies 
the equation 
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In the vicinity of r = 0, the solution of Eq. (9) is the 
Bessel function 
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where J0(x)  is  the  Bessel function of the variable x. 
Let the radius of the waveguide channel is ρ0. 

Assuming that vϕ ≈ 0.5 at r = ρ0, where vϕ(0) = 1,  

from Eq. (10) we obtain ρ τη ρ ≈g 0/( ) 1.5 . Finally 

τ ≈ ρ ρ η2 2
g 0/1.5 . For air ρg = 1.3 kg/m3, η = 

= 1.8 ⋅ 10–5 kg/(m ⋅ s). Let ρ0 = 6 cm (this 
corresponds to the case λ = 2.1 cm, L ≈ 88 m), then 
τ ≈ 116 s. Similar value follows from the results of 
mathematical simulation. Equation (7) was solved 
numerically with the following initial and boundary 
conditions: 
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Figure 1 depicts the dependence of vϕ on r at 
t = 0, 120, and 240 s. It can be seen from Fig. 1 that 
the maximum value of vϕ halves at t ≈ 120 s. 
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Fig. 1. Dependence of the ϕ-component of the linear 
velocity of medium points on r in the vortical channel at 
t = 0 (curve 1), 120 (2), and 240 s (3). 

 

As 
2

0ρ  increases depending on t, the concentration 

of nanoparticles decreases, and 2

0 constnρ =  at 

L = const. It can be seen from Eqs. (3) and (4) that 

the value of V 

2
 determining the unimodal conditions 

of radiation propagation is proportional to 2

0nρ . This, 

in turn, means that the unimodal conditions of 
radiation propagation do not change with time. 

Thus, these estimates demonstrate the possibility 
of creating a waveguide channel using graphite-type 
nanoparticles. It should be noted that the waveguide 
channel, we often see, is a contrail behind aircraft at 
high altitude. This contrail can be used as, for 
example, a waveguide channel for radiation of meter 
wavelength. Depending on the weather conditions, 
such channel may be as long as 100 km. 

Appendix 

Consider a waveguide channel with the stepwise 
profile of the refractive index (PRI) at λ = 1 cm and 
ρ0 = 5 cm:  
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In this case, the optical volume is V = 3.14. The 
waveguide contains two modes: m = 0, N = 1 and 
m = 1, N = 1. The propagation constants are 
βm=0, N=1 = 6.3043 cm–1 and βm=1, N=1 = 6.29 cm–1. 
Figure 2 depicts the dependences of the mode 
intensities on the radius; the functions were 
normalized to meet the condition max Ψm, N = 1. 

Consider a waveguide channel with the 
following stepwise PRI at λ = 1 cm, ρ0 = 5 cm: 
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Fig. 2. Dependences of the normalized mode intensities 

Ψ m=1, N=1
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 on the radius with m = 0, N = 1 (solid curve) 
and m = 1, N = 1 (curve marked by +). 

 
In this case the optical volume is V = 0.993. 

The waveguide contains one mode m = 0, N = 1. The 
propagation constant is βm=0, N=1 = 6.2833 cm–1. The 
dependence of the intensity of this mode on the 
radius is shown in Fig. 3. 

Consider the waveguide channel with the 
following PRI: 
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Fig. 3. Dependence of the intensity of the principal mode 
(m = 0, N = 1) on r. 

 

The waveguide contains one mode m = 0, N = 1. 
The propagation constant of the mode is βm=0, N=1 = 
= 6.2831 cm–1. In this case V amounts to 0.77. 
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