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Criteria for estimating the length of correctly calculated sequences of Riccati–
Bessel functions of the first kind (RBF1) are constructed. The dimensions of sequences 
correctly calculated by the ascending recursion using single, double and fourfold 
precision of the representation of the complex numbersare studied. Algorithms of the 
precision control of the RBF1 calculations are proposed that, provide numerical studies 
based on the Mie theory to be done without operational storage redundancy for the 
RBF1 arrays that, in turn, facilitates on the Mie theory calculations up to extremely 
great values of the diffraction parameter of aerosol particles (∼ 106 and more). 

 

Explosion of aerosol particles under the effect of a 
strong light beam, as well as tension in solid particles, and 
formation micro squares of plasma inside a particle are 
studied based on numerical simulations of the radiation 
intensity distribution inside a particle using the Mie 
theory.1 Terms of the Mie series are functionals which 
include the Riccati–Bessel functions of the first kind 
(RBF1) ϕ

k
(z). Calculations of the RBF1 of complex 

argument come across specific difficulties.2,3 For this reason 
there are no standard programs for calculating the RBF1 of 
complex argument. An increase of the RBF1 calculation 
potentialities due to transition from the single precision of 
calculations to the double one is analyzed in Ref. 4. This 
paper analyzes a possibility of using the ascending recursion 
of the type described in Refs. 5–7 
 

f
l+1

(z) = 
2l + 1

z  f
l
(z) – f

l–1
(z) , (1) 

 

which is valid for all Riccati–Bessel functions. It is 
accumed here that according to Refs. 5 and 7 first two 
functions ϕ

0
(z) and ϕ

1
(z) are equal to 

 

ϕ
0
(z) = sinz, (2) 

 

ϕ
1
(z) = 

sinz
z  – cosz . (3) 

 

Errors of calculation by formula (1) are due to accumulation 
of the ϕ

l
(z) calculation inaccuracy with growth of l. Figure 1 

presents the results of calculations of real (Fig. 1a) and 
imaginary (Fig. 1b) parts of sequences of the Riccati–Bessel 
functions of the first kind of the complex argument z = 10 –
 i10 performed by the ascending recursion (1) with single 
(curve 1), double (curve 2), and fourfold (curve 3) precision. 
The abscissa of this graph is the subindex of the functions. 
Figure 1 shows that at initial steps the results of calculations 
by the ascending recursion calculation is dependent of the 
precision of a complex number representation. However, 
starting with the number l

1
 the calculation with single 

precision leads to the exponential growth of error. At the same 
time the double–precision calculations do not lead to 
noticeable errors at a greater k values up to k equal to l

2
 

which exceeds the value l
1
.  

 

 
 

FIG. 1. Absolute value of real (Fig. 1a) and imaginary 
(Fig. 1b) parts of the sequences of the Riccati–Bessel 
function of the first kind of a complex argument 10 – i10, 
which are calculated by formula (1) with single (curve 
1), double (curve 2), and fourfold (curve 3) precision. 
The abscissa of this graph is the subindex of the RBF1.  
 

The numbers l
1
 and l

2
 characterizing the dimensions of the 

RBF1 sequences which can be calculated with acceptable 
accuracy using the single– and double–precision 
representation of a complex number are determined by the 
values of real r and imaginary μ parts of the complex 
argument z = r + iμ. Signs of r and μ do not influence on the 
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 size of the RBF1 sequences l
1
 and l

2
. For example, l

1
 = 14 

and l
2
 = 25 for all complex arguments like z

1
 = 10 + i10, 

z
2
 = 10 – i10, z

3
 = –10 + i10, and z

4
 = –10 – i10. Similarly, 

if ⏐r⏐ = 1 and ⏐μ⏐ = 10, then independently of signs of r and 
μ, l

1
 is equal to 8 and l

2
 = 16.  

Figure 2a presents the dependences of l
1
 (curves 1, 3, and 

5–7) and l
2
 (curves 2, 4, 6, 8, and 9) on the value of the real 

 

part ⏐r⏐ of argument with a fixed value of the imaginary 
part ⏐μ⏐ = 10–2 (curves 1 and 2), 30 (curves 3 and 4), 50 
(curves 5 and 6), 100 (curves 7 and 8), and 160 (curves 6 
and 9). Figure 2b presents the dependences of l

1
 (curves 1, 

3, 5, and 7) and l
2
 (curves 2, 4, 6, and 8) on ⏐μ⏐ at a fixed 

value of the real part ⏐r⏐ = 10–2 (curves 1 and 2), 1 (curves 
3 and 4), 30 (curves 5 and 6), and 50 (curves 7 and 8). 

 

 
 

FIG. 2. The dimensions l
1
 and l

2
 of the RBF1 sequences correctly calculated using single– and double–precision representation 

of complex numbers. 
 

In Fig. 2a the abscissa is the absolute value of the real 
part ⏐r⏐ of the argument; the absolute value of the 
imaginary part ⏐μ⏐ is 10–2 (curves 1 and 2), 30 (curves 3 
and 4), 50 (curves 5 and 6), 100 (curves 7 and 8), and 160 
(curves 6 and 9). The first curve number in patentheses 
denote the curve corresponds to l

1
 and the second one to l

2
. 

In Fig. 2b the abscissa is the absolute value ⏐μ⏐; the value 
⏐r⏐ = 10–2 (curves 1 and 2), 1 (curves 3 and 4), 30 (curves 
5 and 6), 50 (curves 7 and 8).  

Let us denote the varying value of the argument (in 
the case of Fig. 2a it is ⏐l⏐ and for Fig. 2b ⏐μ⏐), by x and 
the value of a parameter (for Fig. 2a it is ⏐μ⏐, and for 
Fig. 2b ⏐r⏐) by p. Figures 2a and b show that for x ≤ p the 
values l

1
 and l

2
 are in dependent of x and are determined by 

the value p  
 
l
1
 ≈ c

1
⏐p⏐ + 1 , (4) 

 
l
2
 ≈ c

2
⏐p⏐ + 3 , (5) 

 
where c

1
 ≈ 0.5–0.8, and c

2
 ≈ 1. An exception is made for 

the region of the minima in l
1
(z) and l

2
(z) at ⏐μ⏐ ≥ 10 

(Fig. 2b). For x > p the values l
1
 and l

2
 cease to depend on 

the parameter value. As can be seen from Figs. 2a and b all 
curves l

1
 and l

2
 tend to confluence into two groups. The 

ascending recursion method makes it possible to calculate 
the RBF1 for ⏐r⏐ ≤ π⋅218 and ⏐μ⏐ ≤ 8.08 (single precision), 
⏐r⏐ ≤ π⋅250 and ⏐μ⏐ ≤ 17.3 (double precision), and 
⏐r⏐ ≤ π⋅2100 and ⏐μ⏐ ≤ 37.4 (fourfold precision). There are  

two restrictions imposed on ⏐r⏐:  first an acceptable value of 
arguments of the sine and cosine, functions and, second, a 
restriction typical of calculating exponential function. In 
many cases the value l

1
 is insufficient for making 

calculations based on the Mie theory, alternatively, the 
value l

2
 is quite sufficient for this purpose. However, it is 

reasonable to foresee the possibility of using the RBF1 
sequence whose dimension essentially exceeds l

2
. Such a 

possibility is given by the RBF1 calculations by formula (1) 
with the fourfold precision. Actually, since the transition 
from the single to double precision has yielded nearly 
twofold increase of the dimension of the correctly calculated 
sequence (Fig. 1), the transition to the fourfold precision 
may lead to further increase of the dimension. And then the 
problem arises on determination of the dimension of the 
RBF1 sequence correctly calculated by formula (1) using 
the fourfold precision of a complex number representation. 
If further increasing the precision of a complex number 
representation (for example, transition to the eightfold 
precision) is impossible, for testing the precision of the 
RBF1 calculations it is expedient to make use of the 
vanishing behavior of the following functions with 
increasing l 
 

F
1
(l) = ∑

κ=0

l

 
 (2κ + 1) ⎝

⎛
⎠
⎞ϕ

κ
(z)

z

2

 – 1 ; (6) 

 

F
2
(l) = ∑

κ=0

l

 
 (–1)κ (2κ + 1) 

2ϕ2(z)
z sin(2z) – 1 ; (7) 
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F
3
(l) = ξ

l
(z) ϕ′

l
(z) – ξ′

l
(z) ϕ

l
(z) – i ; (8) 

 

F
4
(l) = ϕ

l–1
(z) η

l
(z) – ϕ

l
(z) η

l–1
(z) – 1 ; (9) 

 

F
5
(l) = ϕ

l–1
(z) η

l+1
(z) – ϕ

l+1
(z) η

l–1
(z) – 

2l + 1
z  ; (10) 

 

F
6
(l) = ϕ

l
(z) + iη

l
(z) – ξ

l
(z) , (11) 

 

where η
l
(z) and ξ

l
(z) are the Riccati–Bessel functions of the 

second and third kinds, ϕ′
l
(z) and ξ′

l
(z) are the RBF2 and 

RBF3 derivatives calculated by formulas from Refs. 5 and 7 
 

f′
l
(z) = f

l–1
(z) – 

l
z fl(z) . 

 

The RBF2 and RBF3 calculations by formula (1) does not 
yield essential errors. Formulas for the first two functions 
η
l
(z) and ξ

l
(z) needed for calculations by formula (1) have the 

form7 
 

η
0
(z) = cosz ;  η

1
(z) = sinz + 

cosz
z  ; 

 

ξ
0
(z) = i exp (–iz) ;  ξ

1
(z) = ( )i

z – 1  exp (–iz) . 

 

Relations (6) and (7) are modifications of formulas for 
infinite RBF1 series5 

 

∑
κ=0

∞

 
 (2κ + 1) ⎝

⎛
⎠
⎞ϕ

κ
(z)

z

2

 = 1 ; 

 

∑
κ=0

∞

 
 (–1)κ (2κ + 1) 

ϕ
κ

2(z)

z  = 
sin2z

2   

 

convenient for testing the series convergency. 
Formulas (8)–(11) are derived using algebraic 
transformations of known properties of the RBF. At ⏐μ⏐ < 1 
all criteria (6)–(10) show sharp increase of the functions 
F

1
(l), F

2
(l), ..., F

5
(l) starting from close l, the least of 

them can be taken as the RBF1 sequence dimension l
4
, wich 

is correctly calculated by formula (1). Formula (11) is 
convenient for estimating l

4
 only at small ⏐μ⏐ ≤ 10–4. The 

validity of relations (8)–(11) is worsened with increase of 
⏐μ⏐. For example, at ⏐μ⏐ = 50 these formulas are 
absolutely inapplicable to estimation of l

4
. Calculations 

made by formulas (6) and (7) in a wide range of ⏐μ⏐ values  

(from 10–3 up to 50) show that minima in the dependences 
F

1
(l) and F

2
(l) always correspond to close l values, the 

least of them providing a reliable estimation of l
4
. It should 

be noted that at small l < l
2
 dependences F

1
(l) and F

2
(l) 

may have pulsations. So the search for F
1
(l) and F

2
(l) 

minima is advisable to be done starting with l
1
 > l

2
 . The 

present study opens wide perspectives for calculations based 
on the Mie theory. Without using any intermediate data 
sets one can perform the RBF1 calculations up to large 
values of the argument (4⋅105 – i100) by formula (1). The 
counter recursion should demand too great operational 
memory for storing intermediate data, which should be 
corrected at the final stage of calculations.  

Using the above–mentioned method the calculations 
of cross sections of attenuation and scattering of light by 
a particle with a diffraction parameter of 106 and a 
refractive index of 1.33 – i10–6 takes only few hours of 
ES–1046 computer time and needs a few tens of kilobytes 
of operational memory. Thus, the method eliminates the 
limitations on a particle size and allows a wide use of the 
PCs for making calculations based on the Mie theory. The 
calculations for extremely large diffraction parameters 
that earlier required big machines now can be performed 
on any computer if only it has sufficient word length for 
a relevant representation of a complex number. 
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