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Influence of the beam self–compression when it is focused onto a homogeneous Kerr 
medium on time– dependent phase self–modulation and frequency spectrum of the pulse is 
studied analytically. It is shown that at a strong nonlinearity the frequency spectrum can 
take a specific feature, that is, the position of the main spectral maximum of the beam 
intensity shifts towards the carrier frequency of the pulse. 

 
Recently created high–power femtosecond laser 

systems make it possible to carry out the experiments on 
observing broadening and deformation of the pulse 
frequency spectrum during the laser radiation focusing in 
air.1,2 Such experiments have revealed that prior to the 
appearance of superbroadening the principal mechanism of 
the pulse deformation is the phase self–modulation 
(PSM). A salient feature of subpicosecond pulses is that 
the avalanche processes of breakdown in the beam 
channel, in spite of high intensities (I ≈ 1013–1015 W/cm2), 
are incapable of developing and there may appear a cubic 
nonlinearity of the Kerr type3 with fast relaxation 
(τn ≈ 10–14 s). It can easily be shown that in a 

homogeneous medium (in contrast, e.g., to optical fiber 
waveguides) the intrinsic power of the PSM coincides, by 
the order of magnitude, with the critical power of self–
focusing and therefore the time–dependent effects are 
developed simultaneously with the spatial self–
compression of the beam. Although the spectral 
characteristics of the pulse have been studied sufficiently 
well for the case of the ordinary PSM (for a plane wave 
or transverse mode of a fiber waveguide),4 their behavior 
in a homogeneous medium is not quite clear. 

This paper concerns the study of the behavior of 
variations in the pulse shape and spectrum during the beam 
focusing in a homogeneous medium with rapid response 
cubic nonlinearity. 

 

FORMULATION OF THE PROBLEM 
 

To calculate spectral characteristics of a pulse we employ 
a parabolic equation of quasioptics for a medium with the 
cubic nonlinearity written for an axisymmetric beam5 
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Let us consider the propagation of the focused Gaussian beams 
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The pulse shape upon entrance into a nonlinear medium 
I
0
(t) can be an arbitrary function of time, however, when 

making numerical estimates we assumed the Gaussian 
envelope: 
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Equation (1) for a nonlinear diffraction of the beam 
was written without taking into account the pulse variance. 
A simple estimate shows that in air when no resonances  

occur the dispersion length for an 85–fs pulse is about 
Ld ≈ 200 m at a wavelength of 628 μm. Under conditions of 

strong focusing the dispersion length exceeds, as a rule, the 
distance to the beam caustic, where the basic nonlinear 
effects occur. 

To obtain the spectrum of output radiation it is 
necessary to find the solution of Eq. (1) under boundary 
condition (2) at different times. Using then the Fourier 
transform it is possible to obtain a transformed time 
spectrum of the pulse. 

 
SOLUTION OF THE THREE–DIMENSIONAL 

PROBLEM 
 
To solve Eq. (1) we employ a nonaberrational 

approximation modified in comparison with that given in 
Ref. 6. Let us now transfer to dimensionless variables 
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and introduce a normalized radius of focusing R′f = Rf/κa

2
0
. 

In these variables (the primes are omitted) Eq. (1) under 
boundary condition (2) has the form 
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the current pulse power. A solution of Eq. (5) is sought 
after in the form 
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in this case ϕ(z, R(t)) describes the pulse PSM taking into 
account the beam self–compression. For a dimensionless radius 
of the beam, and using the method of moments,7 we obtain 
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where R
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c
 is the ratio of a current 

power to the critical one at which (within the  
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nonaberrational approximation) the beam is collapsed at 
the geometric focus. 

The solution for ϕ(z, R(t)) in the subcritical and 
supercritical regimes has the forms 
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DISCUSSION OF THE RESULTS 
 
Subcritical regime. Let us consider the propagation of 

pulses with limited intensity when for any time moment the 

inequality 0 ≤ R
~
(t) < 1 is valid and the phase self–modulation 

is described by formula (3). 
The caustic of a focused beam, in this case, can be 

located within the medium. Let us now analyze the pulse 
parameters on the beam axis for two limiting cases: R2

f n 1 

(i.e., a focused beam) and Rf = ∞ (a collimated beam). 

Pulse duration. As can be seen from Fig. 1, the pulse 
shape of a collimated beam varies at distances z > 1 if the 

parameter R
~
 (t = 0) is not too small. It can also be seen that 

in this case the total length of the pulse remains constant 
while its half–width decreases (see Fig. 1a) due to 
"underlining" the central portion of the pulse. 

In a focused beam the pulse shape the variations occur 
within the region of linear caustic (Fig. 1b). In this case it 
decreases before the focus and then it takes its initial value. 

 

 
FIG. 1. Pulse duration Δt at e–1 level in the initially collimated (a) and focused (b, Rf = 0.2) beams as a function of the 

propagation distance. 
 

 
FIG. 2. Nonlinear phase shift ϕn on the axis of the 

initially focused beam (Rf = 0.333, z . Rf). 

Phase. Phase modulation at large distances for a 

collimated (z . (1 – R
~
)–1/2) and focused (z – Rf . R2

f) 

beams is the same. However, in a focused beam (with a 
constant pulse shape) the phase modulation index is two 
times larger than that in a collimated beam. A nonlinear 
phase shift ϕn(t) = ϕ(t) – ϕ(t → –∞), for not very large 

nonlinearity parameters follows the input pulse shape. 
Time dependence of the phase becomes stronger with 
increasing nonlinearity: in the focused beam the width of 
the function ϕn(t) becomes smaller than the pulse 

duration, and its shape differs from the Gaussian (Fig. 2). 
Frequency spectrum. The frequency spectrum can be 

conveniently analyzed by comparing it with the 
conventional PSM (the beam compression can be 
neglected) in a nondisperse regime (Fig. 3). It is well 
known4 that in this case for large nonlinear phase shifts 
the global maximum of spectral intensity is located at the 
edges of the spectrum. 

Two specific regions of the frequency spectrum 
transformations can be isolated within the pulse top ϕ

max 
depending on a nonlinear phase shift. In the region of a  
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moderate nonlinearity (to say conventionally at ϕ
max

 < 4π) 
the frequency spectrum can experience strong broadening, 
and a modulation structure can be seen in it. However, such 
a transformation of the spectrum fully corresponds to the 
spectrum modification occurring at the ordinary PSM. 
 

 
 

 a b 
 

FIG. 3. Frequency spectrum of a pulse caused by the 
ordinary PSM (a) and after beam–focusing (Rf = 0.333) 

in a nonlinear medium (b). The parameter at the curves is 
a nonlinear phase shift at the pulse top, ω

0
 is the carrier 

frequency of the pulse. 
 

In the region of a strong nonlinearity (ϕ
max

 > 4π) the 

nature of spectrum transformations is essentially different. 
For example, the maximum of spectral intensity displaces to 
the central frequency (Fig. 4) and simultaneously a 
broadening of the spectrum takes place. In a collimated 
beam the modulation structure of the spectrum is strongly 
broadened due to the pulse duration decrease. 
 

 
 

FIG. 4. Location of the global maximum in the frequency 
spectrum of the pulse after beam focusing as a function of 
the nonlinear phase shift at the pulse top ϕ

max
. The dashed 

line is the same with the ordinary PSM. An arrow denotes 
a conditional boundary between the regions of moderate 
and strong nonlinearities. 

 

Supercritical regime. Let us define the supercritical 
regime of the pulse propagation as a regime when the 

inequality R
~
(t) > 1 is valid during some period. During this 

time the PSM is described by formula (10) whereas at the 
leading and trailing fronts by formula (9). Consider now 
the propagation of initially collimated beams to the point of 
the nearest nonlinear focus zf. To start with, let the PSM 

be analyzed in broad bands: a2
0
 → ∞, i.e., R(t) → ∞ for 

z → 0. Relation (10), in this limiting case, is reduced to a 
well known relation for the PSM of a plane wave in the 

nondisperse regime = – 
1
2 Rz) and the frequency spectrum 

of radiation is related to an ordinary phase self–modulation. 
A nonlinear phase shift can also occur at an 

insignificant excess of the nonlinearity parameter over its 
critical value at the pulse top. In this case large values of 
ϕ

max
 are achieved in the vicinity of the nonlinear focus zf. 

The calculations reveal that for R
~
(0) = 1.025 at 

z/zf = 0.99999 a nonlinear phase shift at the pulse top ϕ
max

 

is equal to 7.6 π. The frequency spectrum strongly 
broadened due to the pulse duration decrease possesses all 
spectrum features occurring in the case of the ordinary 
PSM. Thus, in particular, the global maximum of the 
spectral intensity is located at an edge of the spectrum. 

 
CONCLUSION 

 
The calculations done in this paper revealed that 

when a pulse is focused in a homogeneous medium with a 
cubic nonlinearity the frequency spectrum, under 
condition of the strong PSM, in a subcritical regime can 
acquire a specific feature, i.e., its global maximum 
appears in the vicinity of the carrier frequency of 
radiation. This result obtained using a nonaberrational 
approximation ought to be verified numerically. Direct 
numerical experiments have been carried out for the case 
of a moderate nonlinearity (see Ref. 8). The results 
obtained in Ref. 8 well agree with the data obtained in 
this paper. 
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