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Analysis of a lateral shear interferometer based on the data of double–exposure 
recordings of a lens Fourier hologram of a matted screen is presented. It is shown both 
theoretically and experimentally that spatial filtering in the plane of the hologram 
makes it possible to control the quality of a lens or objective. The spatial filtration, if 
done in the far–diffraction zone, provides for recording the interference pattern 
characterizing the phase distortions introduced in the reference wave by the 
aberrations of the optical system forming it. 

 
The method of double–exposure recordings of a lens 

Fourier hologram of a matted screen based on superposition 
of subjective speckle fields of two exposures in the plane of 
the photographic plate what yields the formation of lateral 
shear interference patterns is described in Ref. 1. Such 
interference patterns characterize the wave aberrations 
introduced by the lens or objective forming them as well as 
by aberrations of the quasiplanar wave front of radiation 
illuminating the matted screen. The same result is obtained 
in the case of a double–exposure recording of a lens Fourier 
hologram of a matted screen2 by compensating the phase 
shift in the plane of the photographic plate introduced in 
the light wave by the lateral displacement of the matted 
screen by tilting the quasiplanar front of the reference 
wave.  

In this paper we analyze the formation of lateral shear 
interferograms in the bands of infinite width in the case of 
double–exposure recordings of the lens Fourier holograms 
of a matted screen illuminated by aberrationless radiation of 
a diverging spherical wave.  

 

 
 

FIG. 1. Optical arrangements for recording (a) and 
reconstruction (b) of the double–exposure Fourier 
hologram of a matted screen: 1) matted screen, 2) 
photographic plate hologram, 3) reference beam, 4) and 
plane of recording the interference pattern. L
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are the lenses, p
0
 and p

2
 are the spatial filters, and p

1
 is 

the aperture diaphragm.  
 

As shown in Fig. 1a, the matted screen 1 is 
illuminated by an aberrationless diverging spherical wave 
having, in the plane of the screen, the radius of curvature 
R, the wave being formed with the lens L

0
 and the point  

hole p
0
 placed at its focus. During the first exposure the 

Fourier hologram of the matted screen is recorded on the 
photographic plate 2 with the lens L

1
 and using a 

quarispherical diverging reference wave 3 having, in the 
plane of the photographic plate, the radius of curvature r. 
Before making the second exposure the matted screen is 
displaced in its plane, e.g., along the x axis by an amount a 
and the angle of incidence of a spatially limited reference 
beam is changed in the plane (x, r) from θ

1
 to θ

2
. 

Let the complex amplitude of the field in the plane 
of the photographic plate be represented in the Fresnel 
approach and without account for constant amplitude and 
phase factors as  
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where k is the wave number; t(x
1
, y

1
) is the complex 

amplitude of the matted screen transparency, which is a 
random function of coordinates, p
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) exp iϕ
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) is 

the generalized function of the pupil3 of the lens L
1
 (the 

focal length of the lens is f
1
 ) which accounts for the axial 

wave aberrations, l
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 and l

2
 are the distances from the 

principal section (x
2
, y
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) of the lens L

1
 to the matted screen 

and to the photographic plate, respectively. 
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where symbol ⊗ denotes the operation of convolution;  
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is the Fourier transform of the matted screen transparency;  
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 (see Ref. 4), where λ is the wavelength of coherent light 

used for recording and reconstruction of the holograms and d
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is the diameter of the lens L
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 pupil, we assume that within the 

interval of this function existence the phase shift of the 
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If l
1
 > f

1
 relation (3) describes the Fourier transform of 

the input function being convoluted with the pulse amplitude 
response function of the lens L

1
 multiplied by the quadratic 

phase term characterizing the distribution of the phase of a 
converging spherical wave. In this case the width of the pulse 
response exceeds that for the case of the exact Fourier 
transform6 (i.e., when the matted screen is illuminated with a 
plane wave) because l

2
 > f

1
 and the transform scale changes 

with change of the matted screen position. The finite size of 
the lens L

1
 restricts the length and lowers the upper frequency 

of the matted screen spatial spectrum with increasing l
1
 that 

makes the range of the lens L
1
 control over the field narrower. 

In the case of l
1
 < f

1
 the quadratic phase factor in Eq. (3) 

characterizes the distribution of the diverging spherical wave 
phase over the plane of the photographic plate. If the matted 
screen is superposed with the lens aperture, i.e., when l
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 = 0 

the quadratic phase factor takes the form exp 
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the Fourier transform is scaled following the distance l
2
, and 

no vignetting of the spatial spectrum of the matted screen by 
the lens L

1 
takes place (D = ∞). 

The distribution of the complex amplitude of a diffusely 
scattered field, corresponding to the second exposure, over the  

plane of the photographic plate takes, according to the known 
property of the Fourier transform, the form 
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Let the complex amplitudes of the reference waves in the 
plane of the photographic plate be represented, in the 
approach used here, as follows  
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) is the deterministic function 

characterizing the phase distortions introduced into the 
reference wave by the wave aberrations of the optical 
system forming it; b is the value of shear due to the change 
of the dip angle of the spatially limited reference beam 
before the second exposure.  

The distribution of intensity over the double-exposure 
hologram can be represented as the sum of intensities of the 
interferograms of the object and reference beams 
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Let us now assume that the dependence of the amplitude 
transmission of the hologram on the intensity is linear and let 
the hologram be transilluminated by a monochromatic 
quasiplanar wave propagating at the angle θ

1
 with respect to 

the plane of the hologram and the complex amplitude be 

written as expi [ ]kx
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the deterministic function characterizing the phase distortions 
in the wave reconstructing the hologram owing to wave 
aberrations of the optical system forming it. Then the 
distribution of the field, in the minus first order of diffraction, 
over the plane of the hologram will take the form 
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If the condition sinΘ
2
 – sinΘ

1
 + 

aM
l
1
l
2

 = 0 is satisfied Eq. (6) 

can be reduced to the form 
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As follows from Eq. (7) the subjective speckle fields of 
the two exposures coincide in the plane of the hologram at the 

angle α = 
aM
l
1
l
2

 between them and the information about the 

phase distortions introduced into the light wave by the lens L
1
 

is in individual speckle. As a consequence in the plane of the 
hologram we obtain the interference pattern produced due to 
the aberrations of the reference wave.2 If an opaque screen 
with the round hole centered on the optical axis is placed in 
the plane of the hologram and if the condition 
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i.e., the width of an interference fringe of the interference 
pattern localized on the hologram plane does not exceed the 
diameter of the filtering hole, then the diffraction field in the 
plane of filtration is described as follows: 
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where p
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) is the transmission function of the screen 

with the round hole.7 
Let the light field in the rear plane of the lens L

2 
with 

the focal length f
2
 (see Fig. 1) be represented by the Fourier 

integral of the light field in the plane of filtration. Then, 
based on the properties of the Fourier transform we have 
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is the Fourier transform of the filtering screen transmission 
function with an account of the phase distortions of the 
wave reconstructing the hologram or for deviations of the 
photographic plate surface from the flat one without such 
aberrations. 

It follows from Eq. (9) that in the plane of the matted 
screen image, within the region of overlapping of the images 
of the pupil of the lens L

1
, the identical speckles coincide 

and, hence, the interference pattern is localized in the plane 
(x

4
, y

4
) and, as a result of the conditions formulated in 

Refs. 1 and 2, the superposition of correlated speckle fields 
of the two records gives the following distribution of the 
light intensity over the recording plane 4 (see Fig. 1b): 
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This distribution describes the speckle structure 
modulated by the interference fringes. The interference 
pattern has the form of the lateral shear interferogram in 
the bands of infinite width, which characterizes the axial 
wave aberrations of the lens L

1
. Displacement of the 

filtering hole center towards the axis of the matted screen 
makes it possible to control the lens L

1
 over its field8 as 

was demonstrated experimentally in Ref. 9. It should be 
noted that in order to obtain the interference pattern 
within the entire pupil of the lens L

1
 it is necessary, as it 

follows from Eq. (10), that the diameter d
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Let us now assume that the diameter of the lens L
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(see Fig. 2) exceeds the size of the hologram and the lens L
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itself is in the plane of the hologram. In this case the field 
of diffraction in the focal plane of this lens is 
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are the Fourier transforms of the corresponding functions.  
 

 
 

FIG. 2. Optical arrangement of recording the interference 
pattern localized in the plane of the hologram. 
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If, additionaly, an opaque screen with the round hole 
centered at the optical axis of the lens L

2
 is placed in its focal 

plane and the diameter of the hole does not exceed the width 
of an interference band of the interference pattern localized in 
the far–diffraction zone, i.e.,  
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Let the spatial filtering be performed using the aperture 
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By substituting expression (12) in relation (13) we have 
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are the Fourier transforms of the corresponding functions.  
As it follows from relation (14) the speckle fields 

recorded at two exposures are superposed and identical 
speckles in them coincide. Since the width of the function 
P

2
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) determines the size of a subject speckle in the plane 
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least an order of magnitude larger than the size of a speckle,10 
remove this function from the integrand of the convolution  

integral. As a result the irradiance distribution over the 
plane (x
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) can be given in the form 
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This equation desribes the speckle structure modulated by 
the interference fringes. The interference pattern, in this 
case, has the view of a lateral shear interferogram in the 
interference bands of infinite width characterizing the phase 
distortions of a spatially limited reference beam introduced 
by the wave aberrations of the optical system forming it. 

As well known,11 to observe the interference pattern in a 
real time scale the interference patterns of the object and 
reference waves are to be recorded on the photographic plate. 
Then the obtained hologram is placed exactly at the position 
of the photographic plate during its exposure and the 
hologram is illuminated by the initial reference and objective 
waves. Keeping this in mind let us consider the case of 
reconstructing the double–exposure Fourier hologram with a 
copy of the reference wave corresponding to the second 
exposure. In this case the distribution of the diffraction field 
over the plane of the hologram in the minus first order of 
diffraction takes the form 
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If one makes the spatial filtering of the diffraction field 
on the optical axis in the plane of the hologram using the 
aperture diaphragm p

2
 of the lens L

2
 (see Fig. 3a), then, at 

the distance l from it, which satisfies the condition 
1
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1
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 + 
1
l = 0, the light field is described by the relation 
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is the Fourier transform of the transmission function of the 
filtering screen with an account of deviations of the 
photographic plate surface from the perfectly flat. 
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The superposition of the correlated speckle–fields (17) 
yields the distribution of the irradiance over the plane of 
recording (x
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, y

4
) 
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A comparison of relations (10) and (18) shows that in the 
case of reconstruction of a double–exposure Fourier 
hologram with a copy of the reference wave used in the 
second exposure the characteristic size of a speckle in the 
plane of recording of the interference pattern increases 
since l > f

2
. However, a simultaneously observed increase 

of the interference pattern scale leads to the situation 
when the sensitivity of the lateral shear interferometer, 
using the diffusely scattered fields to the wave 
aberrations of the lens under control remains constant. 
 

 

 
 

FIG. 3. Optical arrangement of recording the interference pattern when reconstructing the double–exposure Fourier 
hologram with the coherent radiation in the form of diverging spherical wave and using spatial filtration in the plane of 
the hologram (a) and in the plane of the image of the matted screen (b).  
 

It can be shown that in the considered case of 
reconstructing the double–exposure Fourier hologram with the 
help of a spherical wave the recording of the interference 
pattern localized in the plane of the hologram in the minus 
first order of diffraction can be performed by spatial filtering 
on the optical axis in the plane (x

4
, y

4
) (see Fig. 3b) using the 

aperture diaphragm of the lens L
3
 provided that the condition 

1
l – 

1
f
3

 + 
1
l
3

 = 0 is satisfied, where f
3
 is the focal length of the 

lens L
3
 and l

3
 is the distance from its principal plane (x

4
, y

4
) 

to the plane (x
5
, y

5
). 

It should be noted that if the double–exposure hologram 

is recorded according to Fig. 1a with the use of a quasiplanar 
reference wave, while its reconstruction is being performed 
using a copy of the reference wave corresponding, for instance, 
to that used in the second exposure, then the distribution of 
field over the plane of the hologram in the minus first order of 
diffraction is described by Eq. (16). As a consequence, the 
recording of the interference pattern characterizing the wave 
aberrations of the lens L

1
 can be made according to Fig. 3a, 

while the recording of the interference pattern localized in the 
plane of the hologram–according to Fig. 3b. It should be 
taken into account that in this case the reconstruction of the 
double–exposure hologram is performed using a quasiplanar 
wave. However in this case the width of the spatial frequency 
spectrum of the hologram is always greater than that for the 
Fourier hologram,12 other parameters of the holographing 
arrangement being the same as in the Fourier holographing 
scheme. For this reason, at a fixed spatial resolution of the 
medium used to record the hologram, the range of the lens or 
objective control over the field decreases. 

In our experiments we used the Micrat VRL–type 
photographic plates to record the double–exposure 
Fourier holograms of a matted screen and the He–Ne 
laser radiation at λ = 0.63 μm to illuminate the screen. 
Figure 4 presents an example of the interferogram 
recorded using the spatial filtering on the optical axis in 
the plane of the hologram and reconstructed using a 
narrow (2 mm in diameter) laser beam. The interference  

pattern characterizes the spherical aberration of the lens 
with the focal length f

1
 = 130 mm, and the pupil 

diameter d
1
 = 25 mm, and postfocal defocusing. Using 

this lens we have recorded double–exposure Fourier 
holograms of a matted screen for l

1
 = 80 mm, 

l
1
 = 200 mm and R = 291 mm. In the optical channel 

forming the reference wave the laser beam was expanded 
and then using a converging lens, we formed a diverging 
reference beam with the radius of curvature of the wave 
front at the plane of the photographic plate r = 408 mm. 
Before making the record of the second exposure the 
matted screen was displaced along the direction 
perpendicular to the optical axis by the amount 
a = 0.4 ± 0.002 mm and the angle of incidence of the 
reference beam was changed by Δθ = 8′40′′ + 10′′. 
 

 
 a b 
 

FIG. 4. The lateral shear interferograms recorded with 
the spatial filtering on the optical axis in the plane of the 
hologram (a) and in the plane of the image of a matted 
screen (b).  
 

Figure 4b presents the interferogram, recorded using 
the spatial filtration on the optical axis in the plane of 
the matted screen image, that characterizes the phase 
distortions introduced into the reference wave by the 
aberrations of the optical system forming it. In this case 
the double–exposure hologram was reconstructed using a 
collimated beam 100 mm in diameter and a collimating  
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system composed of an objective 500 mm in focal length 
and the pupil 100 mm in diameter and an eyepiece 80 mm 
in focal length and the pupil 20 mm in diameter was used 
for constructing the real image of the plane of the 
hologram. The filtering hole placed in the frequency 
plane has a diameter of 3 mm. The length of the 
interferogram presented in Fig. 4b was limited due to the 
vignetting of the diffusely scattered field by the lens 
under control and was equal to 50 ± 1 mm, that well 
agrees with the calculated value. 

In conclusion it should be noted that the above–
discussed method of the double–exposure recording of the 
lens Fourier hologram of a matted screen without spatial 
filtering in the channel of formation of a diverging 
reference beam yields the formation of the lateral shear 
interference patterns in the bands of infinite width. In 
this case the interference pattern characterizing the 
aberrations of the reference beam is localized in the plane 
of the hologram while that characterizing the aberrations 
of the lens is in the far–diffraction zone. It is possible to 
observe them separately by spatially filtering the 
diffraction of a diffusely scattered field in the relevant 
planes. In addition, at a fixed spatial resolution of the 
medium used to record the hologram, this method enables 
one to widen the range of controlling a lens over the field 
owing to the increase of the bandwidth of the spatial 
frequencies of the matted screen transmitted through the 
lens under control. 
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