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Effect of line iïtårfårånñå and finite dèration of molecèlar collisions îï 
the IR gas spectra is considered. Àï overview of experimental stèdies of this 
effect is presented and its theoretical description is given. It is demonstrated 
that line interference considerably redistribète the intensities in the region of 
overlapping lines inclèding à sharp decrease of the absorption in the band 
edges. The effect of finite dèration of collisions plays àï important role in 
forming the far wings of the bands. 

 
INTRODUCTION 

 
One of the principal factors which has an appreciable 

effect on the extinction of IR radiation during its propagation 
through the atmosphere is the molecular absorption. To 
calculate it exactly, in addition to the frequencies and 
intensities of the rovibrational lines (the data în these 
paãameters ñàn bå found in the well-known àtlasås1–Ç), onå 
needs à developed theory fîr describing the rovibrational band 
shapes in molåñulàr spectra. Historically for à long time 
theoretical studies of line shapes were based on experimental 
investigations of the atomic spectra (Lorentz, Yablonskii, and 
Weiskopf). This fact stimulated à development of the 
theoretical branches which dealt with the description of the 
band center (the model of the Lorentz line shape) and with 
the use of the adiabatic approximation and perturbation theory 
for numerically calculating the wings of the lines. 

Since the 1950's the theory of molecular spectra 
stimulated has been developing àðàñå by the advances in the 
experimental methods and the well-known Anderson4 study. 
These investigations have shown that in the bands with high 
resolution of rotational structure at pressures of à gas which 
exceed several millimeters of mercury, the central parts of 
the line shapes are adequately described by the Lorentz line 
shape with the line width being linearly dependent on the 
gas density. Anderson's theory and its subsequent versions 
and modifications5–7 made it possible to perfîrm à 
quantitative analysis of the coefficients of line broadening. 

However, the success of these theoretical studies to à 
strong degree, was provided by their use for calculating 
atmospheric transparency. The problem is that à complete 
absorption is observed in the centers of the lines of the 
principal atmospheric components. Meanwhile, the 
propagation of the IR radiation through the so-called 
atmospheric transparency windows is determined by the line 
shape near the wing of the lines. At the same time the 
indicated theoretical approach contains à number of 
approximations which restrict its application for describing 
the wings of the lines. First limitation is caused by the use 
of collisional or Markovian approximation in which we 
ignore the effects of finite duration of collisions. As we will 
show, this approach results in errors in the computed line 
shape near the line edge when the displacement with respect 
to the line center exceeds the inverse duration of à collision. 
The second limitation inherent to the molecular spectra is 
caused by the representation of the band by isolated 
noninteracting lines. The fact that we ignore the line 

interaction may lead to the errors in describing those 
spectral regions, where two or more lines make ñomðaràble 
contributions to the total absorption. Such regions are, in 
particular, the regions of the wings of the overlapping lines. 
In the paper we consider à theoretical approach which 
ðårmits us to avoid these two limitations and to analyze the 
relative contribution of these effects to the formation of 
different parts of the line shàpe. Thå developed àððãîàch is 
used also for quantitative ãåsults. 

 
GENERAL FORÍALISM 

 
ÒÜå line shaðå in the IR absorption spectrum ñàn bå 

described bó the expression 
 

, (1)

 
 

where β = (κT)–l, κ is the Boltzmann constant, Ò is the gas 
temperature, ω is the cyclic frequency of displacement with 
respect to the band center, 
 

 (2)

 
 
is the spectral function, C(t) is the correlation function of the 
vector M of the dipole moment of the corresponding 
vibrational transition, and ωV is the vibrational transition 
cyclic frequency.8,11 The term nearly the spectral function in 
Eq. (1) is of versatile character, so that in analysis of the band 
shàðås it is expedient to concentrate our attention on the 
properties of the spectral function (2). Formula (1) was 
obtained on the assumption that the rovibrational interaction 
affects insignificantly the considered band shape. As the first 
approximation, the effect of weak rovibrational interactions is 
to be accounted for by introducing corrections to the line 
cyclic frequencies. 

For simplicity, let us consider à system consisting of 
spectroscopically active molecule À and the surrounding 
particles which play the role of à bath. The Hamiltonian of 
this system can be represented in the form H = ÍÀ+ ÍB+ Í1= 
= Í0+ Í1, where ÍÀ is the rotational Íàmilltonian of the 
molecule À, ÍB is the bath Hamiltonian, and Í1 is the term  
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describing the perturbation of rotational movement of the 
molecule due to its surroundings. In analyzing the correlation 
and spectral functions, it is convenient to employ the 
formalism of the line sðàñå.6,9–10 Each operator P from the 
state sðàñå is relevant for à vector ⎥P . in the line space. The 
scalar product of such vectors is the thermodynamic average of 
the product of relevant operators 
 

 
 

On the basis of this formalism, the correlation function 
acquires the form 
 

 
 

where L = L0 + L1 is the Liouvillian of the system 
L1P . i

–1
  [Í1, Ð].. The vector ⎥ M . from the line 

space can be represented as the expansion in orthînormàl 
vectors6 ⎥ m ., which are the eigenvectors of the 
Liouvillian LA: LA⎥ m . ωm⎥ m . and 
 

 
 

Hereafter the dipole moment is scaled to the condition 
⎥ M⎥ 2 = 1. 

The use of the kinetic àððrîàñh for constructing the 
correlation function allows us to derive the expression for 
the spectral function (2)12–15 
 

,
  (3)

 
 

where Γ(ω) is the generalized (ñóñliñ frequency dependent) 
relaxation operator somet1mes called the memory operator.16 
As can be seen from Eq. (3), the properties of the spectral 
function, which depend on perturbation, are determined by 
the operator Γ(ω). Let as consider two of the most popular 
approximations of this operator. 

In the first approximation (the model of the isolated 
lines) we ignore all the nondiagonal matrix elements of the 
relaxation operator.17 On the basis of this model, we obtain 
from Eq. (3) 
 

 

,

 
 

i.å., the spectral function does simply become à sum of the 
linå shapes centered in the vicinity of cyclic frequencies of 
the corresponding radiative transitions. 
 

and 

 
 

In the second approximation, we ignore the spectral 
dependence of the Γ(ω) operator.13–15,18–19  The characteristic 
cyclic frequency scale, for which the matrix elements of the 
above operator significantly change, is determined by the 
va1ue τ–1

k  , where τk is the correlation time of rotational 
perturbations of the molecule (the duration of collisions). 
Therefore, within the cyclic frequency interval Δω, which 
satisfies the condition 

Δω n τ–1
k ,  (5) 

 
the variations in Γmm′(ω) can be neglected. This approximation 
is more often employed for not too high gas pressures to 
describe the central parts of lines. In this case when the cycle 
frequency displacements with respect to the line center satisfy 

the condition ⎥ω – ωm ⎥ � ⎥ Γmm(ω)⎥ n τ–1
k , the value of 

Γmm(ω) can be substituted by  Γmm(ωm) in Eq. (4). Hence it 
follows that the central parts of lines in Eq. (4) have the 

Lorentz line shapes with the halfwidths Γ′
mm(ωm). The aim of 

Anderson' s theory and its modifications4–7 is to calculate these 
values. The aim of Anderson' s theory and its modifications4–7 
is to calculate these values. If collisions are nonadiabatic, 
 
ωR n τ–1

k ,  (6) 
 

where is the rms ñóñliñ frequency of 

rotational transitions in the given band of the molecule À (the 
characteristic gap between the most populated rotational 
energy levels), we can ignore  the spectra1 dependence of the 
relaxation operator in the centra1 part of the band up to its 
wings assuming (the Ìàãkîvian approximation) and set  
 

 (7)
 

 
When the model of isolated lines is used together with 

the Eq. (7), the spectral function àñquiãås the form of a sum 
of the Lorentz components not only in the region of the 
central parts of the lines, but in the region of their wings as 
well 
 

.(8)

 
 
Hence it follows that the observed deviations of the line 
shapes from the sum of the Lorentz curves indicate that either 
one or both of the employed approximations are incorrect. Let 
us now consider which deviations from the Loãentz line shape 
are to be expected when we abandon either the approximation 
of the isolated lines or the Ìaãkovian approximation. At the 
fiãst stage Eq. (6) is assumed to be satisfied, so that the 
spectãal dependence of the Γ(ω) operator can be ignored in the 
considered spectral region, while the deviations from line 
shape (8) are caused by the line interactions. 
 

SPECÒRAL EFFECÒS OF INÒERFERENCE 

 
The line interaction (interference) can be il1ustãated 

by the following example. Let the investigated particle be 
the oscillator capable of existence in one of the two 
possible states which differ in oscillation cyclic 
frequencies (the fouã-level system20). Let us assume that 
mean free time for collisions that entail changes in the 
molecular states is connected with the oscillation cyclic 
frequencies via the rålationshið, τ–1

f  n ω2 – ω1 n ω1. The 
dependence M(t) and the corresponding spectra1 function 
àrå shown in Fig. 1à. The two lines with high resolution 
are observed in the spectrum, the centãal parts of these 
lines are described by the Lorentz line shape with 
halfwidth τ–1

f  , which increases with collision frequencies.20 In 
the region of the line wings of the Lorentz character of 
the dependence is destroyed, it is of the super-Lorentz 
character in the troughs between the lines and of the sub-
Lorentz character region in the far wings. 
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FIG. 1. Temporal evolution of the dipole moment and the spectral 
function shape. The dashed shape is the sum of the Loreïtz 
components extrapolated from the center of lines. 
 

As τf decreases in the region 
 

τ–1
f  . ω2 – ω1, (9) 

 

the dependence M(t) becomes close to periodic with an 
average cyclic frequency ω0 = (ω1 + ω2) /2, and the spectral 
function then describes à single line centered at à cyclic 
frequency ω0 with the linewidth which decreases with increase 
of the collision cyclic frequency.20 The dependence M(t) and 
the line spectral shape for this case are shown in Fig. 1b. The 
phenomenon of narrowing the spectrum (collapse) for strong 
overlapping line is one of the effects of line interference. It has 
been observed in numerous experiments.21–23 The intensity 
redistribution in the region of wings of the overlapping lines is 
an initial stage of this phenomenon. 

It was demonstrated in Ref. 24 that in order à collapse 
take place, the relaxation operator should have an eigenvector 
with zero eigenvalue. For purely rotational collisional 
perturbations the vector ⎥ M . from the line space10 15 turns 
out to be appropriate vector, i.å., for any ⎥ P . the equality 
 

,  (10)
 

 

is satisfied15.  
These expressions can be represented as à double-

summation rule for matrix elements of the relaxation operator 
 

. (11)
 

 

The summation rule (11) determines main salient features of 
the interference effect. They can be formulated as follows. 

1. The effect of line interference is manifested in the 
region of strong overlapping lines, including the overlapping 
wings. 

2. Line interference results in redistribution of the 
intensities in the band, in addition the intensity of central 
parts of the band (the region of relatively strong lines) rises 
due to its edge. 

Òî describe the effect of line interference, various 
models are used for the relaxation operator.10,25–29 The simplest 
convenient model for the qualitative analysis of the 
interference effect is the model of strong collisions. According 
to this model, the transition ðãîbability of the molecule to 
fixed rotational state due to collision is independent of the 
initial state of molecule and is described by the thermal 
distribution. On the basis of this model, the matrix elements 
of the relaxation operator have the form10 
 

, (12)
 

i.å., contain only one parameter – the collision frequency τ–1
f  , 

which can be determined from the well–known average of line 
coefficient broadening in the band and from the gas pressure.20 
The use of Eq. (12) makes it possible to derive the analytic 
expression for the spectral function of the band  
 

 
 

which does not contain any adjustable parameters, where 
 

 
 

We shall start our review of experimental studies of line 
interference in the IR gas spectra with strong overlapping 
lines. Similar effects have been thoroughly studied as applied 
to the bands of isotropic Raman scattering,22,23 in which strong 
line overlapping is achieved at relatively low gas pressures. 
Line overlapping in the IR bands of elementary molecules is 
usually attained at pressures of à few tens of atmospheres. 
Figure 2 is shows the observed line shape of the 2ν1 + ν 3 band 
of ÑÎ2 in à mixture of ÑÎ2 and Ar at gas pressure Ð = 94 atm 
and for à temperature of 273 K.30 The same figure shows the 
line shape which is a superposition of the Lorentz line shapes 
perfectly with halfwidths Pγm, where γm  is the experimentally 
determined coefficient of line m broading at relatively low gas 
pressures. The observed deviations of the band shape from the 
sum of the Lorentz line shapes perfectly correspond to the 
expected properties of interference effects. Computer 
calculations performed in Ref. 30 using the model of strong 

collisions with the parameter  describe 

fairly well the experimentally observed line shapes (Fig. 2). 
 

 
 

FIG. 2. The shape of the 2ν1 + 2ν3 baïd of ÑÎ2 in à 
mixture of ÑÎ2 aïd Àã. Circles staïd for experimental 
results of Ref. 30. The computational results are shîwn by 
the dashed curve for the sum of the Lîråntz linå shapes 
and by the solid curve for the òodel of strong ñîllisiîns. 

 

In à number of IR bands of the elementary molecules 
there are groups of close lines, which overlap at pressures close 
to atmospheric pressure. These region involve the bands near 
their edges and the Q–branches of the bands. The part of the 
3ν3 band of ÑÎ2 near its edge in a mixture of ÑÎ2 and Íå was  
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investigated in Refs. 31–33. It was shown from à comparison 
of the observed absorption with the computational results 
obtained under the assumption of the Lorentz line shape that 
the computer line shapes agree fairly well with the measured 
one in the region of the highly resolved lines R(22)–R(34). 
However, the measured absorption exceeds computed one in 
the narrow region of close overlapping lines R(36)–R(42).  
This excess absorption increases with gas pressures. 
Immediately behind the line R(40) with the highest frequency 
à sharp transition to the sub–Lorentz line shape is observed in 
Fig. 3. À similar effect is observed in the mixture of ÑÎ2 and 
N2 at atmospheric and higher pressures31–32  The deviations of 
the line shape of the sub–Lorentz character were discovered 
for this system at atmospheric pressure in Ref. 33. The model 
of the strong collisions provides qualitative description of 
indicated deviations from the Lorentz line shape. However, it 
predicts an appreciably less effect. The observed deviations 
from the model line shape near the band edge can be described 
successfully using à more flexible model,31,32 where the 
adjustable parameter is the number of the adjacent lines which 
take part in the interactions, while the summation rule (11) 
still holds. 

 

 
 

FIG. Ç. Absorption iï the 3ν3 band of ÑÎ2 ïåàr its edge for 
Ò = 291 Ê. The solid ñèrvå is for experimental results31,32 aïd 
the dashed ñèrvå staïds for the sum of[ the Lorentz lines. 
Vertical bars show the liïå center positions and relative 
intensities, the horizontal bar shows the spectral slit width 
used for measurements. 
 

Individual lines in the Q–branches and near the edge of 
the bands are close one to another and not equidistant. At low 
gas densities they follow the Lorentz line shape. When the gas 
density rises, the closest 1ines start to overlap. These lines 
correspond to the transitions with low values of angular 
momentum. In these regions the line shape cannot be 
described by the sum of the Lorentz lines.34,35 At the initial 
stage the number of lines which follow condition (9) is small 
in comparison with the total number of lines in the band, and 
the shape of the Q–branch appears to be close to that found 
in the spectra of isotropic Raman scattering.36 It was this fact 
that made the description of the shape of IR spectrum 
successful35 by applying the computational models developed 
for the isotropic Raman scattering.37 The same approach was 
used in Ref. 25. 

 

 
 

FIG. 4. The width Δυ of the Q–branch of the υ1 +υ2 
band of ÑÎ2 for Ò = 292 Ê. Points show the 
experimental results of Ref. 38. Dashed straight liïå 
shows the average line width in the Ð– and R–branches 
iï à mixture of ÑÎ2 aïd Àr. 
 

When condition (9) is satisfied for all the lines of the 
Q–branch, the band of the isotropic spectrum of Raman 
scattering which consists of the single Q–branch enters into 
the state of collapse.22,23 However, the line overlap in the Q–
branch of the IR absorption spectrum does not imply 
overlapping of all the interacting lines in the band necessary 
for starting the stage of line narrowing, since the lines of the 
Ð– and R–branches start to overlap only at much higher 
pressures. That is why the Q–branches in the IR absorption 
bands continue to broaden after complete overlapping of all 
the lines. However, the rate of broadening becomes much 
slower than the rate of line broadening prior to the line 
overlap as well as the rate of broadening of lines in the Ð– 
and R–branches. Figure 4 shows the data of Ref. 38. It 
demonstrates the dependence of the Q–branch width on 
pressure for the ν1 + ν2 band (near 2076 cm–l) of ÑÎ2 in à 
mixture of ÑÎ2 and different buffer gases. As can be seen from 
this figure, the Q–branch width increases slower than the 
average line width of the Ð– and R–branches. At some 
moment the lines of these two bands get wider than the entire 
width of the Q–branch. One of such spectra is shown in 
Fig. 5. As in the case of the band near its , edge, the model of 
strong collisions provides qualitatively correct description of 
this effect but results in underestimation of its expected value 
(Fig. 5). The structure of the relaxation matrix, which enables 
one to interpret the experimental data, has been calculated 
theoretically in Ref. 29 for à mixture of ÑÎ2 and Íå. The 
calculations indicate that interaction between the lines of 
different branches is much weaker than the interaction 
between the lines of one and the same branch. The weaker the 
interaction of the lines of the Q-branch with the lines of the 
Ð– or R–branches, i.å., the lower the relative value of the 
relevant elements of the relaxation matr1x Γmm′, the slower is 
the broadening of the Q–branch. In the hypothetical limiting 
case, in which there are no Q–P and Q–R interactions (the 
model of the isolated branch) after complete overlap of lines, 
the Q–branch should enter into à stage of line narrowing 
similar to that in the bands of isotropic Raman scattering. 
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FIG. 5. The shape of the Q–braïch of the ν1 + ν2 baïd 
of ÑÎ for 292 Ê at Ð = 10.7 atm. Åõðårimental data are 
borrowed from Ref. 38:  
1) experiment. Computatioïal results:  
2) superposition of the Lorentz liïå shape; 3) model of 
strong collisions. 
 

 
FIG. 6. Observed dåviàtiîns of the band shape from the 
suðårðîsitiîn of the Lîrentz line shapes in the àtmospheriñ 
traïsparency microwindow centers of the 1–0 bànd of ÑÎ in 
pure gas and diffårent gas mixtures.10 

 

 
 

FIG. 7. Profile of the adjustable function of à band computed following the model of strong collisions. Points indicate valèes of 
the adjustable fuïñtion at the atmospheric transparency òicrowindow centers, and Δυ is the displacement with respect to the 
band center. 
 

An increase of absorption by strong lines caused by 
interference due to absorption in the bands near their edges 
can be observed at low gas pressures when the line widths are 
much smaller than the line separation. This effect is observed 
in the troughs between the lines (in the atmospheric 
transparency micrîwindîws)10,26,Ç9,40 and in the far wings of the 
lines which form the wing of the band. The non–Lorentz 
character of absorption in these regions can be conveniently 
characterized by the adjustable funct1on of the band 

 
 

The data that have been obtained in Ref. 10 for band of 
fundamental tone of ÑÎ in mixtures of ÑÎ and different 
buffer gases10 indicate à weak dependence of the values 
κexp = Φexp / ΦLor on the nature of perturbing particles 
(Fig. 6)  including such particle characteristics as mass 
and, consequently, the duration of collisions. This allow 
us to consider the band shape in atmospheric transparency 
microwindows in the Markov approximat1on. 
 
CO2 + H2 
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Figure 7 demonstrates the adjustable function for the 
band of fundamental tone of ÑÎ T = 78 K computed with the 
use of the model of strong collisions for low collis1on cyclic 
frequencies τ–1

f  n ⎥ ωm – ωm′⎥ , where m ≠ m′. Vertical bars 

denote the positions and relative intensities of individual lines. 
An interesting salient feature of the computed function κ is its 
oscillating character with the oscillation period close to (but 
not equal to) the separation between the lines in the band. 
Around the centers of relatively strong lines the funct1on κ  

becomes unity, κ > 1 in the troughs between the strong lines, 
and κ < 1 in the troughs between the weak lines near the band 
edge. There can be found atmospheric microwindows in the 
intermediate region of the band where both the sub– and 
super–Lorentz parts of the line shapes combine. Figure 8 
shows the theoretical and experimental10 values of κ in the 
region from the line R(4) to the line R(10) of the principal 
band of ÑÎ in à mixture of ÑÎ and Í2. The experimental and 
computed data agree fairly well. 
 

 
FIG. 8. Adjustable function for the 1–0 baïd of ÑÎ in the troughs between the lines. Empty circles – experiment.10 Filled 
circles – values of adjustable function at microwindow centers, obtained from the data of the independent measurement series.10 
The solid curve shows computational results obtained on the basis of the model of the strong collisions. Vertical bars indicate 
the line positions and relative intensities. 
 

In studying absorption in atmospheric transparency 
microwindows the measurements are performed, as à rule, at 
the centers of the troughs between the lines. Figure 7 shows 
the values of the adjustable function at the centers of such 
microwindows as individual points. As can be seen from this 
figure, the boundary of the region of transition from the 
super–Lorentz to the sub–Lorentz absorption, which is found 
from these data, is located near the boundary of the region of 
relatively strong lines, so that changes in the width of the 
rotational structure of the band with temperature of à gas 
should result in the respective shift of the boundary of 
transition from super– to sub–Lorentz absorption at the 
centers of atmospheric microwindows. The experimental 
studies10 of the temperature dependence of κ testify to this 
suggestion (Fig. 9). 

The indicated regularities of the IR band shapes in the 
atmospheric transparency microwindows were also observed in 
studying the spectra of ÑÎ2 and N2O.10,26,39,40 To describe these 
effects, more realistic empirical computational models were 
used along with the model of strong collisions26,39 as well as 
quantum mechanical computations of the relaxation matrix 
based on the theoretical values of potential of colliding 
particles.27 The values of κ in the atmospheric transparency 
microw1ndows computed by different methods become close in 
value. This allowed the authors of Refs. 26 and 27 to make à 
conclusion that in these spectral regions the value of κ is 
weakly sensitive to the concrete specific form of the relaxation 
model used to compute the matrix Γmm′. This conclusion is in 
agreement with the above–mentioned weak effect of the type 
of perturbing particles on the shape of κ(ω) in the atmospheric 
transparency microwindows (Fig. 6). This dependence 
gradually increases in going to the wing of the band, in which 
the effect of finite duration of collisions might be expected. 

 
 

FIG. 9. Temperature dependence of the adjustable function 
for the 1–0 band of ÑÎ at the atmospheric transparency 
òicrowiïdow centers. Empty and filled circles show 
experimental results of Ref. 10. For clearness, the points 
computed using the strong collisions model are joined by 
smooth curves. À diagram of relative line intensities for 
investigated temperatures is shown below. 
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ÒÍÅ EFFECÒ OF ÒÍÅ FINIÒE DURATION OF 

COLLISIONS ON ÒÍÅ SÍAPE OF ÒÍÅ WING OF ÒÍÅ 

BAND 
 

In contrast to the atmospheric transparency 
microwindows in the central part of the band the absorption 
in the wings of the band exhibits à well–pronounced 
dependence on the nature of perturbing particles.41–49 To 
describe the band shape in this spectral region, let us now 
consider the asymptotic form of function (3) for large 
displacements with respect to the band center 

 

⎥ ω⎥ . ωR (13) 
 

and 
 

⎥ ω⎥ . ⎥ Γmm′(ω)⎥. (14) 
 

Representing the operator  in Eq. (3) 

in terms of powers of  we obtain 
 

 
 

Taking into account the double–summation rule (10) and 
(11), this series to an accuracy of  ∼ ω–4 has the form  
 

. (15)
 

 

where  Since the values 

μn are real, it follows from Eq. (15) that 
 

 (16)
 

 

If the condition (5) is satisfied for ⎥ ω⎥  along with the 
conditions (13) and (14) we may proceed to the Markov 
approximation in Eq. (16): 
 

.  (17)
 

 

Expression (17) shows that the asymptotic behavior of the 
spectral function in the Markov approximation is of the form 
ω–4. Òhe non–Ìaãkovian character of the collisional 
perturbations should manifest itself in deviations of the band 
shape from the ω–4 dependence in the ñóñliñ frequency region 

⎥ ω⎥ � τ–1
k  . 

Starting from the explicit form of the operator Ã(ω), the 
relation between Φ(ω) and the dynamics of binary collisions of 
an absorbing linear molecule was found in Ref. 15. The same 
result was obtained in Ref. 49 by the different method. The 
expression founid in Refs. 15 and 49 acquires the simplest 
form in the case of nonadiabatic collisions 

 

 (18)
 

 

which satisfy the condition (6), where 
 

 (19)

 
 

Starting from the data of theoretical computations of 
intermolecular potentials,50–53 the authors of Refs. 15 and 
54–56 computed the correlation function of the force 
moment and its Fourier transform F(ω) for collisions of the 
Ñ02 molecule with Íå, Àã, and Õå, and for collisions of ÑÎ 
with Íå and Àã. In calculating it was found that the force 
moment in these systems is predominantly associated with 
the short–range repulsive forces, which causes relatively 
small correlation time of the force moment (duration of 
collisions), so that the condition of nonadiabaticity (6) is 
satisfied with an error ≤ 1%. The function F(ω) computed 
for all the indicated system could be approximated by the 
expression  
 

.

 
 

where k1 is the Bessel function and ωk ≈ τ–1
k  and the values of 

b are close to unity. It follows from Eq5. (18)–(20) that in 
the region of the non–Ìarkovian character of perturbations 
(where the effect of finite duration of collisions manifests itself 
the Markovian character of the ω–4 frequency dependence in 
the wing of the band is transformed into the dependence of 

the form  if the displacements with respect 

to the band center satisfy the condition  ω⎥ . τ–1
k  . 

 

 
 
FIG. 10. Absorption in the wing of the ν3 band of ÑÎ2 in 
mixtures of ÑÎ2 aïd Íå aïd Õå. Experimental data are 
shown by empty circles for Õå for Ò1 = 291 Ê and by 
filled circles for Íå for T = 295 Ê (Ref. 47). Compute 
calculations are shown by the solid curves for an exact 
computation, by the dashed curves for the Harkovian 
approximation, and by the dot–dash curves for the sèm of 
the Lorentz line shapes; Δν is the displacement with 
respect to the band center. 
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Figure 10 shows the calculated results for absorption 
in the short wavelength wing of the νç band of ÑÎ2 in the 
mixture of ÑÎ2 and Íå and Õå in comparison with the 
experimental data.48,49 The computations were performed using 
Eqs. (1), (18) and (20) and the parameters <N2>cl, b, and ωk 
in Eq. (20) were found using the potential functions from 
Refs. 50 and 51. The results of analogous computations for the 
mixture of ÑÎ2 and Àr, which rely on the potential from Ref. 
50 and the experimental data, are presented in Fig. 11. À 
comparison between the computed and observed values of 
absorptions indicates à satisfactory agreement between them. 
The same figures show the shape of the wing of the band 
computed as à sum of the Lorentz line shapes relevant for the 
experimental coefficients. 

The observed sub–Lorentz character of the absorption in 
the wing of the bond is caused by not only the finite duration 
of collisions (the spectral dependence of the function F(ω) but 
also the effect of line interference. To demonstrate clearly the 
relative importance of these two mechanisms. Figs. 10 and 11 
show the computational results of the absorpt1on coefficient iï 
the Ìarkovian approximation, i.å., when the function F(ω) is 
replaced by its value for ω = 0. It is seen from these figures 
that the factor ω–4 in Eq. (18) caused by line interference 
leads to the deviation of the line shape from the Lorentz line 
shape by à factor of several tens and several hundreds even 
neglecting the spectral dependence of the function F(ω). The 
effect of finite duration of collisions is manifested in additional 
deviation of the line shape, whose relative value increases with 
ω and mass of the perturbing particles. 

 

 
 

FIG. 11. Absorption iï the wing of the ν3 baïd of CO2 in à 
mixture of CO2 and Àr. Experimental data are shown by the 
empty circles for Ò = 290 Ê  (Ref. 48) and by the filled 
circles for room temperature (Ref. 62). Compute calculations 
are shown by the curves, see the explaïatioï to Fig. 10. 
 

Figure 12 shows the computed absorptions in the wing 
of the band of fundamental tone of ÑÎ in mixtures of ÑÎ 
and Íå and Àã (Ref. 56) and the experimental data that 
have been obtained in Ref. 47. The experimental data for à 
mixture of ÑÎ and Àã have been obtained here relying on 
the technique described in Ref. 46. The two potentials of 
interaction of ÑÎ with Àã, which describe fairly well the 
temperature dependence of the second virial coefficient for 
the given mixture, are presented in Ref. 52. The correlation 
part of the potential computed ab initio was joined the  

long–range Van–der–Waals dependence at à point in which 
their logarithmic derivatives become equal in value. The 
absolute value of the energy at à point of joining was 
assumed equal to either the correlation (potential No. 1) or 
the long–range (potential No. 2) energy.  

As can be seen from Fig. 12, the use of potential No. 2 
provides fairly good agreement between computed and 
experimental values of absorption and potential No. 1 
underestimates the value of absorption approximately by à 
factor of two. The result which has been obtained here testifies 
to à high sensitivity, of absorption in the wing of the band to 
the form of the potential. Computations with the potential 
taken from Ref. 53 for the ÑÎ + Íå system allow us to 
describe correctly the observed spectral behavior in the region 
of the wing of the band, however, it underestimates the 
observed value of absorption by à factor of 1.5–2. 

 

 
 

FIG. 12. Absorption in the wing of the 1–0 band of ÑÎ in à 
mixture with Íå and Àã for Ò = 292 Ê. Experimental data 
are shown by empty circles for Àã and filled circles for Íå. 
Computations for à mixture of ÑÎ and Ar include the 
Markov approximation and are shown for potential Nî. 2. 

 

As can be seen from Figs. 10–12, the main reason of the 
sub–Lorentz character of absorption in the near wing of the 
band for the investigated molecular systems is the line 
interference. This result explains the success in describing the 
shape of the central part of the band (up to its near wings) in 
the Ìarkov approximation. However, absorption in the far 
wings cannot be described without simultaneous account of 
the line interference and the finite duration of collisions. 

 
CONCLUSION 

 
Let us now consider the prospects of developing 

theory of the band shape in the IR absorption spectra of 
molecular gases. At present the theory of the far wings of 
the bands along with the theory of line broadening and 
shifts displacement. The difficulties in the trajectory 
computations which arise in computing the correlation 
function of the force moment (or the analogous function in 
the case of adiabatic collisions15) can easily be avoided, viz., 
by employing the statistical simulation methods.57 

The theory of the band shape in the region of the 
central part of the entire band including the regions of 
overlapping lines and of absorption in the atmospheric 
transparency microwindows is less developed. First ab initio 
computer calculations of the relaxation matrix27,29 and the  
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absorption in the atmospheric transparency microwindows27 
showed that this à ðãîblem is at the extreme bounds of 
capability of modern computers. It seems that in this field 
one should expect qualitatively new results. 

The series of studiås26,Çl,32,Ç9 should be mentioned here, 
in which various empirical models of the relaxation matrix 
are proposed. As à rule, the empirical parameters entering 
into these models cannot be independently found or used 
outside the limits of the experiments applied to determine 
their values. These studies are, undoubtedly, very valuable 
from the methodological viewpoint since they make it 
possible to study the relations among the salient features of 
the relaxation processes, the structure of the relaxation 
matrix, and the band shape using the models. As for 
atmospheric applications, such an approach may prove to be 
useful for approximate description of deformation of the Q–
branch shape due to the overlapping lines. However, this 
approach is too complicated for approximate description of 
continual absorption in the practical calculations.40 As it 
was noted in Ref. 58, for practical purposes à compilation 
of simple formula of the band shapes along with the values 
of their parameters is quite sufficient. If qualitative salient 
features of the band shape are known from experimental 
studies, the description of the observed continual absorption 
by the given system with reasonable band shape and two or 
three adjustable parameters meets with success. An 
appropriate example of the band shape of this kind is the 
well–known Âenedict band shape.59 

Line interference and the effect of finite duration of 
collisions are not the only possible reasons for the found 
shape deviations from the Lorentz band shape. The 
deviations can be due to absorption by the dimers and by 
complexes with more complicated structure of the molecular 
systems which are capable of generating them.60 If we are à 
priori aware of the fact that for the conditions of the 
experiment the investigated molecules have such à 
capability, we believe that it is incorrect to analyze the 
band shape without estimating the possible contribution 
made by dimers. That is why our paper, for which the 
similar estimates were not the subject of work, has not 
touched upon the data on the continual absorption in the 
spectra of water vapor and hydrogen halides. The dimer 
nature of the absorption may also manifest itself in some of 
the investigated systems for low temperatures. The estimates 
of the dimer concentration and contribution to the 
absorption10 have demonstrated that the strong super–
Lorentz absorption in the troughs between the lines in the 
central part of the 1–0 band of ÑÎ both in pure gas and in 
à mixture of à gas and N2 for low temperatures is caused 
namely was produces by such à dimer mechanism. That is 
why the analysis of the indicated spectra presented in 
Ref. 61, which ignore dimmer contribution, must not be 
considered valid. 
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