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The state-of-the-art in definition of the amplitude and phase of signals as applied to analysis of
fringe patterns of the interferogram type is discussed. Two problems of both theoretical and practical
significance, namely, the conditions for existence of two-band spectrum in real signals and optimal
calculation of the Hilbert transform, are considered. Some constructive results are presented.

Introduction

Signals, depending on two variables, in the form
of oscillations, of closed or unclosed fringes are
observed in interferometry, when studying surfaces,
transparent bodies, and wave processes. They may have
different physical origins. Such signals also can be
formed in a natural way as, for example, tree rings,
which are indicators of changes of numerous climatic
factors. Variations of the shape and mutual
arrangement of fringes carry the information on the
object under study and can be considered as spatial
amplitude-phase modulation.

In the general case, to describe an oscillation or
wave process by two functions (amplitude and phase), a
consistent definition of these two concepts is required.
The wave equation or the equation describing some
oscillation process does not include such a definition;
therefore, some additional reasoning is needed. A great
number of papers (Refs. 2-6, 9, 10, 21, 27, 32, 34, and
39) treat the problem of definition of the amplitude
and phase as applied to the process depending on one
variable. Various ways of definition are useful in
framework of different problems to be solved and for
mathematical models in use. However, the analytic
signal (AS) introduced by Gabor in 1946 (Ref. 27)
has received the widest acceptance due to Vakman’s
works.

Fringe-patterns are the subject of permanent
research. The urgency of such research is confirmed, for
example, by Fringe-conference held annually in Bremen
at the Bremer Institut fir Angewandte Strahltechnik.!8
In Tomsk, at the Institute of Atmospheric Optics, such
a research is carrying out since the Institute inception.
Initially, S.S. Khmelevtsov, V.V. Pokasov, V.P. Lukin,
and O.N. Emaleev designed and made a phasometer and
conducted first field measurements of phase fluctuations
of laser radiation propagating through the atmosphere.

In 1974, 1 was involved in development of
mathematical apparatus for description of interference
patterns for their further computer analysis. Then,
starting from 1982 in the Joint Institute of Atmospheric
Optics SB AS USSR, methods of high-precision
interference testing of astronomic optics were developed
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by me in close cooperation with L.A. Pushnoy and
E.A. Vitrichenko (Section headed by Academician
A. Prokhorov in the Space Research Institute AS
USSR). The methods were based on the formalism of
analytic signal and dispersion relations and provided for
the root-mean-square error in surface measurement less
than one hundredth of wavelength.?.8 The method of
interferogram  demodulation by filtering in the
trigonometric basis, which is widely used now, was
proposed by our team in 1982 and, simultaneously, by
Takeda, Ina, and Kobayashi.38

With development of adaptive optics, a demand
arose for phase modulation of a light wave by changing
the shape of an optical surface in space and time.
Therefore, it became necessary to define consistently and
constructively the light wave phase, what was done
through generalization of AS to the spatiotemporal case. !9

Nowadays these methods are progressed in the
Institute of Optical Monitoring. There appeared a
possibility to apply them to analysis of tree rings,
which are among few sources of information on long-
term changes in the temperature, humidity, and
chemical composition of soil and the atmosphere. It is
also possible to find some dendro-optical analogies and
to consider tree rings as an interferogram formed by
some “ecological” and “biological” fields.

In this review, we consider the fundamentals of the
analytic signal formalism and related problems, present
the extension of capabilities of the analytic signal and a
departure from it in a special case, and propose an
optimal numerical realization of the basic algorithm
just the Hilbert transform.

1. Definition of the amplitude and phase

The simplest mathematical model of signals
depending on two variables can be of the form

Glx, y) =B [0 + W(x, p)IF] =
=B [1 + d*(x, y) + 2alx, y) cosN(x, 1. (1)
Here W(x, y) is the complex object field with the

amplitude a(x, y) <1 and phase N(x, y); B is the
operator characterizing a nonlinear detector. The
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transformation performed by it may be both reversible
and irreversible, for example, binary.

The fundamental property providing for the fringe
structure of a signal is monotonicity of the phase
N(x, y) in the parametric cross section of the plane xy.
In this case, the extrema of the signal defined in the
cross section should coincide with the extrema of the
signal defined on the whole plane. This property
provides for the possibility of signal demodulation in
some independent cross sections.!® Therefore, from here
on we use only one argument x.

The cosine function entering into the signal model
(1) is periodic and even. Therefore, a non-monotonic
phase can give the same signal modulation as the
monotonic one. If xy is the phase extreme point, then

cos N(x) = cos N(x) , where
0 21 +N(x), x <x
N(x) = %2T{(n+1)—N(x),x>x0 )

O
Bn2n+1), x=x 2 O(—o0.09)

The phase N(x) can be discontinuous at the point xg,

but its derivative remains continuous and bounded in
the absolute value to the same limit as derivative
of N(x).

Analyzing different methods for definition of the
amplitude and phase, Vakman took into account the
continuity and differentiability of the signal amplitude,
phase independence of the units, in which the signal is
measured, and coincidence with the intuitive ideas of
the amplitude and phase of harmonic oscillations. The
conclusions have been formulated as follows.

— For harmonic oscillations, the acceptable
definitions give the expected result, continuous
amplitude, and linear phase.

— For narrow-band signals, the results given by
different methods can disagree, but the discrepancy
between them decreases as the relative width of the
signal spectral band decreases.

— Some methods lead to appearance of singular
points in the amplitude and phase, when signal
derivatives turn to zero.

— Consistent and most general definition of the
amplitude and phase is achieved using the analytic
signal.

The analytic signal W(x) is constructed as a
complex function

W(x) = Ux) +iV(x),

V(x) Zlv.pj&ds =HU(x). (3)
nm o Jx-s

Here the improper integral is determined in the sense of
Caushy’s principal value (v.p.) in the cases that
s » o and at x=s The imaginary part of the
analytical signal V(x) is the Hilbert transform of its real
part U(x). The operator H denotes the Hilbert
transform with respect to the argument x. It was
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shown3 to be the unique linear operator, for which the
following equality is valid:

Hcos (a.x +¢g) =sin (o .x +¢g), (4)

where ¢y and a. > 0 are constants, having the sense of
the initial phase and carrier frequency. Thus, within
the rule (3), AS is introduced in the same way for all
real signals. However, after introduction of the AS, the
amplitude and the phase are calculated by the well-
known equations with ambiguity in the signs and in the
number of T for the phase, therefore the obtained
functions are not necessarily unique:

a(x) = £ U2(x) +V2(x),

V(x)

N(x) =arctan )

+nm, n=0,1,2,... . (5)

What is interesting, the signs and the integer number n
can vary with the argument x (Ref. 6).

The most important property of the analytic signal
is the causality of its Fourier transform.!2 The causality
follows from the equivalence of the Hilbert transform
to multiplication by the function -isgna in the
frequency region a. In other words, AS corresponding
to the given real function U(x) is obtained by zeroing a
half of its spectrum

Wi(x) =I(1 +sgn a)e"i“xdaJ'U(s)ei“ds =

=2{e_i”daJ'U(s)ei“Sds. (6)

Suitability of a mathematical model for
investigations is largely determined by properties of the
functions, it consists of. When selecting a class of
functions for representation of a physical quantity, one
should take into account the existence of the Hilbert
transform, which introduces the analytic signal. The
periodic functions are of special interest, because the
algorithm of fast Fourier transform (FFT), which is
basic in numerical analysis of signals, is intended just
for them. In this connection, it is worth approximating
experimental data by some periodic function for
obtaining the optimal spectral estimates.!6 This
problem is considered in Section 3.

The spectra of periodic functions contain
singularities in the form of &functions. According to
the Paley—Wiener—Schwarz theorem,23 such functions
have finite spectra and are entire analytic functions of
the exponential type (EFET). What is more, if EFET
bounded on the real axis, it also is a function of class A
(according to Levin, Ref. 11) or class B (Ref. 33). The
boundedness of EFET determines the absolute
integrability of its Fourier transform (spectrum),
including the case that EFET itself is not square-
integrable. The contrary proposition is valid as well,
and because the Hilbert transform of a function does
not break the absolute integrability of its spectrum, the
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Hilbert transform of EFET is a bounded function as
well. The Hilbert transform exists also for the functions
having no finite spectrum, but with a continuous
derivative, as well as for a wider class of functions
satisfying the Holder condition. However, these classes
will not be used here because of the need in discrete
representation of signals.

The problems of definition of the amplitude and the
phase are discussed intensively, but they are open yet.69
The cause is that there is no unique approach to
construction of mathematical models of oscillations,
waves, detectors, and systems, because the devices and
signal carriers have different physical nature. For
example, the position of the origin with respect to the
signal in space is of no concern, but there always is the
initial instant in time, before which nothing was going
on. However, the AS gives nonzero amplitude even before
this instant. Therefore, some doubts are cast upon the
expediency of such a model, which should be justified.

An entire function is completely determined by its
zeros, for example, in the form of Hadamard’s product.
At weak modulation, zeros of the oscillation W(x) lie in
the complex half-planes, OW(x)Z 0. As modulation
intensifies, zeros appear on the real axis x, what realizes
the ambiguity contained in Eq. (5). Thus, we can say
that zeros are indicators of a threshold of phenomenon
complexity.!” During propagation, with the increase of
the path and with intensification of medium
fluctuations, the light wave gets over the threshold of
complexity and vortices are formed in it. At the vortex
centers, the amplitude is zero, and the phase is
indefinite there. However, in some neighborhood of the
vortex center, the phase varies monotonically around
zero and is minimal.20 Besides, the probability density
of amplitude fluctuations of the wave is changed, and
some approximate methods of solution of the wave
equation become inapplicable after the threshold. It
follows here from that the complexity of mathematical
description of oscillation and wave processes increases
considerably after appearance of zeros. In this sense,
the analytic signal does not simplify the situation.
Nevertheless, application of the AS to analysis of two-
dimensional spatial signals is useful.!® For definiteness,
let us formulate the conditions and the order of
introduction of the analytic signal.

a) The real signal is formed in such a way that it
has a two-band Fourier spectrum; the left-hand and the
right-hand spectral bands do not overlap.

b) The associated complex signal is formed by
zeroing of one of the spectral bands of the doubled real
signal.

Now consider two practically important problems.

2. Phase monotonicity and dispersion
causality of spectrum
From the interference pattern G(x, y), one can

hardly conclude whether the cross sections ReW(x)
have two-band spatial spectra, what is needed for
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application of the analytic signal. These cross sections
may be a broadband signal, whose carrier frequency
differs a little from the halfwidth of the spectral band. In
this case, the point of origin may lie inside the spectral
band and the possibility to apply the analytic signal to
define the amplitude and phase becomes problematic.

Experimentally, we can observe the complete
profile of interference fringes in linear cross sections of
an interferogram, what is provided for by the phase
monotony in this cross section. The monotony can be
also assumed in the case of tree rings in view of their
non-negative radial growth.

Keeping in mind that the frequency shift of the
spectrum is equivalent to addition of a linear function to
the signal phase, we can connect the fulfillment of the
causality condition for the spectrum of the complex
function W(x) with the monotonic character of its phase.
Let us use the Bernstein inequality 322 in the form

max d‘Z(X) <o, max |W(x)|, D)
x

where the function W(x) = a(x) expiN(x) belongs to
the class of functions with the finite spectrum; oy is the
absolute value of the upper frequency in the spectrum
of this function.

In an important special case, characteristic of
interference testing, that N(x) is not a linear function
and the amplitude a(x) is constant, we find

max [N'(x)| < ay . 8

According to the theorem on the spectral shift, the
causality condition is fulfilled for the function
a(x) expi[N(x) +a,x] in the frequency region, and it
follows from the Bernstein inequality that the phase
N(x) +a,x is certainly monotonic. Thus, for the phase
of signal with the constant amplitude to be monotonic,
it is sufficient for the spectrum of the signal to be
causal. Obviously, the cases are possible that the phase
is monotonic but the causality is absent.

Let us determine the effective width of the
spectrum 0, as the normalized second-order moment.
Such an approach allows us to consider functions having
no finite spectrum as well. Let W(x) be a T-periodic
function bounded above. Then the discrete Fourier
spectrum Sy, exists for it. Keeping in mind Parseval’s
identity, we can find

0 T '
SRl [ ioPds

2 — k== _ —
a; = =

) T
> ISl [ W () P
k==

T
!’[a'2+ a®N'?]dx

2 12
=——F——< A%+ maxN (x)’ ©)

‘[anx
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where

T T
A2 =‘!'a'2 (x)dac/.!'a2 (x)dx .

By analogy with the causality condition, we
introduce the condition of dispersion causality. For this
condition to be fulfilled, it is sufficient to shift the
spectrum S, in frequency area more than its effective
width a, in any direction as follows

a(x)exp i [N(x)+x\/A2+max N'2(x) ] (10)

At sufficiently large shift, the phase monotonicity and
dispersion causality of the spectrum are observed
simultaneously, as it follows from the inequality

C(e<\/A2+maxN'2(x)2max|N'(x)|. 1)

At a = const, A = 0 and we obtain from Eq. (11)
max@' (x)> a, . (12)

Thus, for the condition of dispersion causality of the
spectrum of a signal with the constant amplitude to be
fulfilled, it is sufficient for the signal phase to be
monotonic.

Comparing Egs. (8) and (12), we obtain

0. < max M (X)E ay, (13)

whence it follows that the condition of causality is
stronger than the condition of dispersion causality,
which can consequently find the wider utility for
construction of the complex signal by the rules (see
Items (a) and (b) in Section 1).

To characterize the position of the signal spectrum
with respect to the origin, it is useful to introduce the
degree of causality

NN N N
pc=i‘/ ISkl = ISkl Zl5k|2 , (14)
= k=NN+1 =
where NN =N /2 + 1 is the Nyquist frequency; S is
the discrete spectrum of the signal calculated by the
FFT algorithm. It is obvious that Op/& 1, and the
equality is achieved, when the spectrum of the complex
signal satisfies the condition of causality.

The monotonic character of the phase makes it
possible to increase the degree of causality of the
spectrum. Assume that the phase is monotonic and the
function W(x) = a(x) expiN(x) is not an analytic
signal. If the variable x is transformed so that

NGO = 0.1, =N (a1, (13)

then the spectrum of the function W(t) becomes far
narrower and concentrated nearby the point a = a..
With neglect of transformation errors, the width of this
spectrum with respect to o, depends only on the
amplitude a(t), which changes only slightly as
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compared to a(x). At a(x) = const, the spectrum of the
function W<(x) satisfies the condition of dispersion
causality, and the transformed function W(1) is
complex harmonic oscillation with the frequency a..

The single-valuedness of the inverse function N~1
is provided for by the monotonic character of the
function N(x) itself. If the derivative of N(x) is
nonzero as well, then the inverse function has no
breaks, what is especially important for numerical
realization.

This transformation E (compression—extension)
compresses the periods of oscillation, which are larger
than some mean period, and extends those of them,
which are smaller than the mean period, while the
inverse transformation E ' returns oscillations into the
initial state according to the following equations:

Ea(x)cosN(x) =a{N~"(a,D}cos{N[N!(a . D]}=
=a(t)cosa,rT,
Ha(Dcosa.1=a(DHcosa . 1=a(Dsina, 1,  (16)
E " a(Dsina,1=a{N(x)/a,}sin{a,N(x)/a,} =
=a(x)sinN(x).

The second equation here is valid under the condition
that the amplitude a(x) does not contain frequencies
higher than a, therefore this function is put before24
the operator of the Hilbert transform with respect to
the variable 1. Figures 1—3 illustrate the above said.

In the general case, similarly to Eq. (3), we
introduce the associated complex signal W(x) for the
real signal U(x) with the monotonic phase by the rule

W(x) = Ux) +iV(x), V(x) =& 'HEUG). (17)

According to the method of determining the width of
the spectrum (9), this complex signal W(x) can be
called the effective signal. It should be applied in place
of the AS at the a priori monotonic phase and when the
function U(x) has not a two-band spectrum.

The question arises how to implement the
operations described above? Actually, in order to
determine the phase N(x) having only U(x), the phase
should be pre-known for the transformations (15)—(17)
to be performed. However, we can assume here that

Ng(x) = arctan [H U(x) /U(x)] 18)

is sufficient for the initial compression of the spectrum.
Then the iteration process is performed according to the
equation

Nn+1(x) =
= arctan {H U[N,'(a. D1/ UIN, (@ D0y (1) /q.-(19)

Numerical experiments in Ref. 19 have shown that four
iterations by Eq. (19) increase the accuracy of phase
estimation more than tenfold as compared with
Eq. (18).
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1024

Readings

Fig. 1. Transformations of the signal with the monotonic phase:
monotonic phase N(x) without linear component (@), derivative
of the monotonic phase N(x) (b), signal cos N(x) (o),
arccos{cos N(x)} (d), harmonic oscillation obtained from the
signal cos N(x) via the compression—extension operation E (e).
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Fig. 2. Monotonic phase N and inverse phase N™!' for the
signal shown in Fig. 1c.
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Fig. 3. Absolute value of Fourier transform of signal shown in
Fig. 1e, obtained from signal cos N(x), shown in Fig. 1c,
using the E-operation. Mode is at the frequencies equal to the
number of periods of the signal cos N(x). The amplitude of the
spectrum is low nearby the origin. The scale along the ordinate
is logarithmic.

The effective signal (17) as well as the analytic
signal (3) define the amplitude and phase in global
sense, they depend on signal changes on all axis, from
infinity to infinity.4 The monotonicity is capable of
local definition. Both approaches are give the equal
results at the unit amplitude of the real signal U(x). In
this case the monotonic phase can be found® to
arbitrary constant without integral transform H as
follows

|U" ()

J1-U2(0)

Figure 1 shows the numerical realization of this
equation.

What is interesting, Eq. (20) is applicable to
binary signals as well. Let, for example, the signal
cosN(x) with the monotonic phase is subjected to some
nonlinear transformation

N(x) =J' de. (20)

darccosU(x)| de =
dx I

01, cosN(x) = 0,
BeosN(x) = 5 1 SN 1)
0 1, cosN(x) < 0.

Then, according to Eq. (20) we obtain

N
|di[arccosBcos N(x)] | =1y SN(x)-n2n+1) /2] -
x

n=i

N
ml nZY[W)—man)/z]:Ny(x) : (22)

where N is the number of periods of the signal.

Thus, the reconstructed phase Ny(x) is a sum of
the Heaviside functions; it is the unit-step function
coinciding with the initial phase N(x) at the points,
where the initial phase is a multiple of the odd number
of m/2, and the reconstructed phase is constant
between these points:

This result was obtained in cooperation with
Yu.N. Isaev.
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ENCx,,), n N, ) =122 +1) /2
Ny(x) =0
H(2n+1)/2, x, <x<x,4

. (23)
n=0,12,...

Numerical realization of the operations (20)—(22)
has shown the absence of significant difficulties.

3. Optimal calculation of the Hilbert
transform

The algorithm for calculation of the Hilbert
transform based on the direct calculation of the discrete
convolution is described in Ref. 30. The direct
transformation looks like:

0, 2 ~ U
o h—n k is even, n is odd;
0 na n
V(kD) = - (24)
0, 2 U(nt
o= , kisodd, niseven,
0 I = k-n

while the inverse transformation has the symmetric
form

0 2 < V(D)
D‘;Z n—k o Miseven, k is odd,

UG = o (25)
0 V(kt
D_AZ o N is odd, k is even,
0 Tt n-—

where T is the half-cycle of the highest frequency in the
spectrum of the transformed function; the indices k and
n vary within the interval of definition of the function.

By this algorithm, the discrete representation of the
initial continuous signal is transformed into the discrete
representation of its Hilbert transform, which is close to
its continuous prototype provided that

— readings of the initial signal are obtained
according to the Kotelnikov theorem;

— the initial signal is well defined by its readings
on a finite support in the sense that beyond the support
it does not differ significantly from zero by some norm.

Realization of Egs. (24) and (25) as a Fortran
program!® was recognized as new by GosFAP in 1978.
Numerical experiments have shown that the program is
rather efficient when the two conditions mentioned above
are fulfilled. However, in the general case one cannot
expect that the accuracy of such transformation will be
high, because the Hilbert transform is defined on the
infinite interval and physically unrealizable.

Another possibility of numerical realization of the
Hilbert transform follows from its properties in the
frequency region (6) and reduces to multiplication of
the signal spectrum by a signum function. One of the
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early papers (Ref. 25) uses an approximate harmonic
analysis for realization of this approach.

The FFT is now the most efficient and well
developed algorithm for Fourier transform of a series of
readings. 142536 Tt could be used as a basis for realization
of the Hilbert transform and other types of linear filters.
However, the FFT algorithm assumes that readings are
given on a circle; hence, they can correspond to only a
periodic function.

Thus, there is inconsistency between the infinite
domain of definition of the functions of trigonometric
basis, the Hilbert transform operator, and the finite
domain of definition of the signal. This domain is two-
dimensional and, possibly, multiply-connected, if we
deal with demodulation of interferograms. 16,18

The described inconsistency shows itself as a ripple
of the transformed function and, of course, of its phase.
The widely used method for suppression of this edge
effect in the case of spectral estimates is application of
smoothing windows. There are some examples of the use
of windows in interferometry as well. In Ref. 31, when
applying the Hanning window,28 the ripples were
decreased roughly threefold. However, in that case the
object phase was constant, though the values of the signal
itself did not coincide at the edges of the interval,
because the number of interference fringes was not
integer. In addition, there was no noise in that example.
In the general case, windows are inefficient for
suppression of the edge effect in the reconstructed phase.
Windows significantly decrease the signal amplitude at
the edges of the interval of definition, and the filtering
results in relative increase of the noise level in these
intervals. This fact was first noticed in Ref. 38, in which
the interferogram was multiplied by the Hanning
window. The edge effect in that case was marked at 20%
of the length of the interval of definition, and the
maximal value of phase ripples is larger than 0.2mrad.

An adequate method for solution of the discussed
problem is optimal periodic continuation of the signal
beyond the domain of definition with the following
application of FFT.

In numerical experiments it was found®19 that the
monotonic character of the phase or the possibility to
reduce it to monotonic due to evenness and periodicity
of the cosine (2) is sufficient for introduction of the
associated effective signal. This opens wide possibilities
for selection of rectilinear and curvilinear cross sections
in the domain of definition of interferogram. If the
selected scanning curve is closed and belongs to the
domain of definition, then the problem of continuation
does not arise, because the cross section is a periodic
function of the scanning parameter. However, cross
sections usually break at the external boundaries of the
domain of definition. Besides, at multiple connection,
the cross section breaks appear at internal boundaries.
As a result, it can consist of several finite fragments.

Now we consider algorithms for transforming such
fragments into a periodic function, for which the
methodically exact algorithm of the Hilbert transform
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is possible. To derive the optimality criterion, we
assume that U(x) is a real bounded function defined for
all x O (-, ), and the signal consists of the known
fragments of this function. Assume also that the
continued function U(x) coincides with U(x) within
the signal. Introduce the square-integrable function
Q(x) having the low-frequency spectrum nonoverlapping
with the spectra of the functions U(x) and U(x). Take
into account the property,24 allowing the low-frequency
oscillation to put before the operator of the Hilbert
transform

HQ(x) Ux) = Qx) H Ux) = Qx) V(x), (26)

and the fact that the energies U(x) and V(x) are
equal. Then the following equality is valid

J'Qz(x)[U(x) —U(x)?dx=

= 192 (OH[U(x) - Ux) [} dx. (27)

Let the function Q(x) tend to unity within the
known fragments of the signal and to zero beyond these
fragments. In this case, the left-hand side of Eq. (27)
tends to zero by definition, and the spectrum of the
function Q(x) extends. When the spectrum becomes so
wide that it overlaps the spectra of U(x) and U(x), the
equality (27) becomes invalid. For the equality to be
violated at as small as possible value of its left-hand
side, it is necessary to provide for as narrow-band
functions U(x) and U(x) as possible.

A posteriori one can only decrease the width of

the spectrum of the function U(x) by the following
operations of continuation:

—more smooth interpolation of individual
fragments of the signal inside the domain of definition,

— more smoth extrapolation beyond the domain of
definition,

— selection of the functional dependence providing
for the necessary smoothness.

Thus, for the Hilbert transform of the continued

function U(x) to be the closest to the true function

U(x), it is necessary for the continuation operation to
provide for the minimal width of the spectral band of
the function U(x) at the given fragments of U(x).
Just this is the optimality criterion.

As structure restrictions, we should take into
account the properties of the basic FFT algorithm.25,36
This operation is defined on a circle. Therefore, the
cross section should be continued periodically to the
whole infinite axis. Besides, we must keep in mind that
the FFT algorithm deals with arrays of quite definite
length. This is connected with factorization of a number
equal to the array length and with calculation of the
Fourier transform of every elementary array, whose
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length is equal to the corresponding factor. Usually this
factor equals two, and the length of the whole array is
some integer power of two. However, any compound
number can be uniquely represented as a product of
prime numbers accurate to their arrangement. The
prime factor cannot be large, since this decreases the
algorithm speed. Reference 36 describes an algorithm
and presents the Fortran program using the first ten
prime numbers (1, 2, 3, 5, 7, 11, 13, 17, 19, 23) for
factorization. The set of compound numbers formed
from these factors will be denoted as Pjy.

A priori information includes a fundamental
property of monotonicity. The phase N(x, y) in cross
section has a significant linear or square (or close to
them) component. Just this causes the fringe structure
of an interferogram. The linear continuation of this
component with conservation of continuity corresponds
to the introduced optimality criterion, since the
effective width of the spectrum S} is determined by the
derivative of the signal phase (9). Consequently, at
continuation the conditions should be created for
appearance of extra interference fringes or their parts,
whose width should slightly differ from the width of
given neighboring interference fringes.

The well-known theorem on convergence of
Fourier series connects the rate of convergence with the
number m of continuous derivatives of the function

represented by the series, Sj, = o /K™y at k —» w. It
is clear from this expression that jumps between the
known fragments U(x) and the fragments U(x)
obtained as a result of continuation are undesirable.
But this situation is characteristic for the iteration
method of continuation.2935 Either a significant
number of iterations is performed and fragments are
joined smoothly in the case of convergence or only
several iterations are performed due to deficit of time
and breaks arise between the functions U(x) and U(x)
at the joining points.

A technique of complementing the interference
fringes by a sinusoid in some cross sections of an
interferogram is described in Ref. 37; the initial phase,
frequency, and amplitude of the sinusoid are
determined from the given fragments. In this technique,
it is necessary to determine the positions of extreme
points in the cross section. But under the noisy
conditions, this operation is incorrect and smoothness of
the extension fails to be realized.

To complement the cross section, we take its own
fragments as a model and minimize some smoothness
functionals on the set of cross section readings.

Consider one of the possible algorithms of
realization of this method. The continuation is
constructed through shift of cross section fragments
beyond the domain of definition. Assume that the cross
section to be continued is defined on the interval
[1, n]. First, we continued the right-hand edge of the
cross section by some number of readings 7, which
provides for the minimum of the functional
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n
L,= |UG) - U - 7)|=min. (28)
r(kn—k) i=n=F+1

Then continued the left-hand edge of the cross section
by [ readings according to the condition

n
L= Z|U(i)—U(i+1)|:min. (29)
IKkn—k) 1=

The minimum can be sought by the simple trial-
and-error method. The distances between both the two
functions and their differences AU(i) are minimized
simultaneously; for example, at k = 2 we obtain

min =|[U) -UU +D|+|U@)-UU +2)|>
>|UQ@)-U|-|U+2)-U+D)|=
=AU -aU U +1)). (30)

The new edges are joined in the similar way to
obtain a periodic function, but the smoothness
functional depends on two parameters

n
Lpg= M |UG+i+p-D-UG+ql| (31
pD(O,n—k) 1=
q(0,l-k)

A conditional minimum L, such that the whole
length of the continued cross section n, =n+1[+p+gq

belongs to the set of numbers Py is also sought by the
trial-and-error method. Therefore, the sufficient density
of these numbers in the interval [n, 3n], » O n., is of
principal significance and the efficiency of the method
depends on it. The numbers for the most commonly used

range from 27 to 2% are tabulated below.

128 130 132 133 135 136 138 140 143 144 147
150 152 153 154 156 160 161 162 165 168 169
170 171 175 176 180 182 184 187 189 190 192
195 196 198 200 204 207 208 209 210 216 220
224 225 228 234 240 242 243 245 250 252 256

The numbers of the set Pyq increase exponentially.
Consequently, the possibility of continuation to some
interval decreases starting from some number. The
possibility of continuation can be determined as a ratio
of the quantity of numbers from Py in a given interval
to the quantity of the natural scale numbers in this
interval (Fig. 4). Figure 5 exemplifies continuation of
the signal cross section by the described algorithm.

From the above description of the method it can
be concluded that the method corresponds to the
introduced optimality criterion at fixed k& and n for
n. 0 Pyg and in the class of functions of the cross
section to be continued. Numerical experiments have
shown that the proposed method of continuation of
interferogram cross sections beyond the domain of
definition solves the formulated problem and diminishes
markedly the edge effects in the reconstructed phase.

Vol. 15, No. 1 /January 2002,/ Atmos. Oceanic Opt. 85

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

00r\‘r\‘\\‘\\‘\\‘\\‘\\‘\r‘\\\\‘
1 31 61 91 121 151 181 211 241 271 301

Number of the reading, from which continuation begins

Fig. 4. Possibility of continuation of interferogram cross
section by ten readings (broken line) and by hundred readings
(circles) at factorization of the array dimension into prime
numbers {1, 2, 3, 5, 7, 11, 13, 17, 19, 23} for FFT-algorithm.

C

Fig. 5. Optimal continuation of the interferogram cross
section: cross section is shown by inverse contrast (a);
interferogram cross section (b); continued cross section,
continuation is shown in light color, polynomial modulation is
excluded (c).

Conclusions

Thus, we have analyzed the state of the art in
definition of the amplitude and phase of the real signal
and separated two important problems. They are the
condition for existence of a two-band spectrum of the
real signal, which also is the condition for possible
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introduction of the analytic signal, and the optimal
calculation of the Hilbert transform, which is necessary
for numerical realization. The following results have
been finally obtained.

— The condition of dispersion causality using the
idea of the effective width has been formulated. It has
been found that the phase monotonicity provides for
fulfillment of the condition of dispersion causality for
the Fourier transform of the complex signal with the
constant amplitude.

— A complex effective signal has been introduced,
which can be applied when the spectrum is not
rigorously two-band. The iteration method has been
developed for its realization.

— For signals with the monotonic phase and
constant amplitude a local phase definition has been
proposed. The monotonic phase can be found directly
from the real signal, without the complex signal, and
this method is applicable to binary signals as well.

— An algorithm has been developed for calculation
of the Hilbert transformation; this algorithm is based
on the optimal periodic continuation of the function to
be transformed according to the criterion of minimal
width of the Fourier spectrum by shift of fragments of
the function beyond its domain of definition.
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