Том 30, номер 04, статья № 10

Козодоев А. В., Привезенцев А. И., Фазлиев А. З., Филиппов Н. Н. Систематизация источников спектральных данных, содержащих параметры спектральных линий молекулы диоксида углерода и ее изотопологов в ИС W@DIS. // Оптика атмосферы и океана. 2017. Т. 30. № 04. С. 329–341. DOI: 10.15372/AOO20170410.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Контуры спектральных линий для малых смещенных частот используются при обработке экспериментальных спектров в решении обратной задачи вычисления столкновительных параметров контура [1]. Их различия обусловлены разными физическими условиями (сильные / слабые столкновения, большие / малые давления и др.). Множество различных контуров применяется для исследования параметров спектральных линий молекул диоксида углерода, метана, метилгалидов и т.д. При систематизации параметров спектральных линий разнообразие контуров приводит к усложнению структур данных в информационных системах (ИС) и структур индивидов, используемых для описания свойств спектральных данных, характеризующих контур линии, в онтологиях молекулярной спектроскопии.
Дана краткая классификация контуров линий и их параметров, приведены результаты систематизации спектральных данных, относящихся к разным контурам спектральных линий, используемых при обработке спектров молекулы диоксида углерода. Для загрузки измеренных и рассчитанных параметров контуров спектральных линий, встречающихся в цифровой библиотеке ИС W@DIS, построена система импорта соответствующих спектральных данных. Разработано программное обеспечение для автоматического описания свойств импортированных решений. Основные свойства данных, формируемые в системе ИС W@DIS, связаны с описанием результатов анализа качества импортированных данных.

Ключевые слова:

классификация контуров спектральных линий, профили спектральных линий диоксида углерода, информационная система W@DIS

Список литературы:


1. Bykov A.D., Fazliev A.Z., Filippov N.N., Kozo-doev A.V., Privezentsev A.I., Sinitsa L.N., Tonkov M.V., Tretyakov M.Yu. Distributed information system on atmospheric spectroscopy // Geophys. Res. Abstr. 2007. V. 9. P. 01906.
2. McClatchey R.A., Benedict W.S., CloughS.A., Burch D.E., Fox K., Rothman L.S., Garing J.S. AFCRL Atmospheric Absorption Line Parameters Compilation. Environmental Research Paper N 434 AFCRL-TR-73-0096 (Air Force Systems Command, USAF, 1973).
3. Chedin A., Husson N., Scott N.A., Jobard I., Cohen-Hallaleh I., Berroir A. La banque de donnes GEISA, Description et logiciel d'utilisation. Internal Rep. LMD 108 (Ecole Polytechnique, Palaiseau, France, 1980).
4. Rothman L.S., Gordon I.E., Hill C., Kochanov R.V., Wcislo P., Wilzewski J. HITRAN in the XXI-st century: Beyond Voigt and beyond Earth // Abstr. 70th Inter. Sympos. Mol. Spectrosc. Junе 20, 2015. Illinois. Champaign-Urbana, URL: http://hdl.handle.net/2142/ 79346
5. Rothman L.S., Jacquemart D., Barbe A., Benner D.C., Birk M., Brown L.R., Carleer M., Chackerian C.Jr., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud J.-M., Gamache R.R., Goldman A., Hartmann J.-M., Jucks K.W., Maki A.G., Mandin J.-Y., Massie S.T., Orphal J., Perrin A., Rinsland C.P., Smith M.A.H., Tennyson J., Tolchenov R.N., Toth R.A., Vander Auwera J., Varanasi P., Wagner G. The HITRAN 2004 Molecular Spectroscopic Database // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 96, N 2. P. 139–204.
6. Császár A.G., Fazliev A.Z., Tennyson J. W@DIS—Prototype information system for systematization of spectral data of water // Abstr. 20th Colloquium High Resolution Mol. Spectrosc. 2007. P. 270–271. URL: http://vesta.u-bourgogne.fr/ hrms/Program/ AbsBk.pdf.gz
7. Lavrentiev N., Privezentsev A., Filippov N., Fazliev A. Complete set of published spectral data on CO2 molecule // Abstr. 22nd Colloquium High Resolution Mol. Spectrosc. 2011. P. 353–354.
8. Hikida T., Yamada K.M.T., Fukabori M., Aoki T., Watanabe T. Intensities and self-broadening coefficients of the CO2 ro-vibrational transitions measured by a near-IR diode laser spectrometer // J. Mol. Spectrosc. 2005. V. 232, N 2. P. 202–212.
9. Voigt W. The distribution of intensity within spectral lines // Phys. Z. 1913. V. 14. P. 377–381.
10. Anderson P.W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76. P. 647–661.
11. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961. V. 122. P. 1218.
12. Nelkin M., Ghatak A. Simple binary collision model for Van Hove’s Gs(r, t) // Phys. Rev. 1964. V. 135. P. 4.
13. Раутиан С.Г., Собельман И.И. Влияние столкновений на доплеровское уширение спектральных линий // Успехи физ. наук. 1966. Т. 90, вып. 2. С. 209–236.
14. Ciurylo R. Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings // Phys. Rev. 1998. V. 58. P. 1029.
15. Rosenkranz P.W. Shape of the 5 mm oxygen band in the atmosphere // IEEE Trans. Antennas Propag. 1975. V. AP-23, N 4. P. 498.
16. Pine A.S. Line mixing sum rules for the analysis of multiplet spectra // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 57, N 2. P. 145–155.
17. Smith E.W. Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures // J. Chem. Phys. 1981. V. 74. P. 6658.
18. Predoi-Cross A., Luo Caiyan, Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 2000←0110 (Σ←Π) Q branch of carbon dioxide // J. Chem. Phys. 2000. V. 112. P. 8367.
19. Predoi-Cross A., May A.D., Vitcu A., Drummond J.R., Hartmann J.-M., Boulet C. Broadening and line mixing in the 2000←0110, 1110←0000 and 1220←0110 Q branches of carbon dioxide: Experimental results and energy-corrected sudden modeling // J. Chem. Phys. 2004. V. 120, N 22. P. 10520. DOI: 10.1063/1.1738101.
20. Berman P.R. Speed-dependent collisional width and shift parameters in spectral profiles // J. Quant. Spectrosc. Radiat. Transfer. 1972. V. 12, iss. 9. P. 1331–1342.
21. Rohart F., Mader H., Nicolaisen H.-W. Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients // J. Chem. Phys. 1994. V. 101, N 8. P. 6475.
22. Lisak D., Havey D.K., Hodges J.T. Spectroscopic line parameters of water vapor for rotation–vibration transitions near 7180 cm–1 // Phys. Rev. A. 2009. V. 79, N. 5. P. 052507.
23. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
24. Pinter F. Rotational combination line width of N2 and CO2 as a function of the quantum number j // Opt. Spectrosс. 1964. V. 17, N 5. P. 428.
25. Boulet C., Arie E., Bouanich J.P., Lacome N. Spectro-scopie par Source Laser. II. Etude Experimentale de l'Elargissement des Raies de la Transition 00°1–(10°0, 02°0)I de CO2 Perturbe par N2. Application de la Theorie d'Anderson, Tsao et Curnutte au Calcul des Largeurs des Raies de CO2 Pur, et Perturbe par N2 // Can. J. Phys. 1972. V. 50, N 18. P. 2178–2185. DOI: 10.1139/p72–288.
26. Tubbs L.D., Williams D. Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide // J. Opt. Soc. Am. 1972. V. 62, N 2. P. 284–289. DOI: 10.1364/JOSA.62.000284
27. Young C., Bell R.W., Chapman R.E. Variation of N2-broadened collisional width with rotational quantum number for the 10.4-µm CO2 band // Appl. Phys. Lett. 1972. V. 20, N 8. P. 278. DOI: 10.1063/1.1654148.
28. Boulet C., Isnard P., Arie E. Largeurs des raies de la transition 00°1 > (10°0; 02°0)I de CO2 perturbe par l'argon // J. Quant. Spectrosc. Radiat. Transfer. 1974. V. 14, N 7.  P. 637–649.  DOI: 10.1016/0022-4073(74)90039-9.
29. Meyer T.W., Rhodes C.K., Haus H.A. High-resolution line broadening and collisional studies in CO2 using nonlinear spectroscopic techniques // Phys. Rev. A. 1975. V. 12, N 5. P. 1993–2008. DOI: 10.1103/ PhysRevA.12.1993
30. Oodate H., Fujioka T. Measurements of 4.2 µm CO2 pressure broadening by using an HBr chemical laser // J. Chem. Phys. 1978. V. 68, N 12. P. 5494–5497. DOI: 10.1063/1.435676.
31. Planet W.G., Tettemer G.L., Knoll J.S. Temperature dependence of intensities and widths of N2-broadened lines in the 15 µm CO2 band from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1978. V. 20, N 6. P. 547–556. DOI: 10.1016/0022-4073(78)90025-0.
32. Suarez C.B., Valero F.P. Intensities, self-broadening, and broadening by Ar and N2 for the 3011II < 000 band of CO2 measured at different temperatures // J. Mol. Spectrosc. 1978. V. 71, N 1. P. 46–63. DOI: 10.1016/ 0022-2852(78)90074-7.
33. Valero F.P., Suarez C.B. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 3001II // J. Quant. Spectrosc. Radiat. Transfer. 1978. V. 19, N 6. P. 579–590. DOI: 10.1016/0022-4073(78)90092-4
34. Planet W.G., Tettemer G.L. Temperature-dependent intensities and widths of N2-broadened CO2 lines at 15 µm from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1979. V. 22, N 4. P. 345–354. DOI: 10.1016/0022-4073(79)90072-4.
35. Valero F.P., Suarez C.B., Boese R.W. Intensities and half-widths at different temperatures for the 201III<000 band of CO2 at 4854 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 1979. V. 22, N 1. P. 93–99. DOI: 10.1016/ 0022-4073(79)90110-9.
36. Tettemer G.L., Planet W.G. Intensities and pressure-broadened widths of CO2 R-branch lines at 15 µm from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1980. V. 24, N 4. P. 343–345. DOI: 10.1016/ 0022-4073(80)90098-9.
37. Valero F.P., Suarez C.B., Boese R.W. Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201II < 000 band of 12C16O2 at 4978cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 1980. V. 23, N 3. P. 337–341. DOI: 10.1016/ 0022-4073(80)90111-9.
38. Devi V.M., Fridovich B., Jones G.D., Snyder D.G.S. Diode laser measurements of strengths, half-widths, and temperature dependence of half-widths for CO2 spectral lines near 4.2 µm // J. Mol. Spectrosc. 1984. V. 105, N 1.  P. 61–69.  DOI:  10.1016/0022-2852(84)90103-6.
39. Abubakar M.S., Shaw J.H. Carbon dioxide band intensities and linewidths in the 8–12-µm region // Appl. Opt. 1986. V. 25. P. 1196–1203. DOI: 10.1364/ AO.25.001196.
40. Cousin C., Doucen R.L., Houdeau J.P., Boulet C., Henry A. Air broadened linewidths, intensities, and spectral line shapes for CO2 at 4.3 µm in the region of the AMTS instrument // Appl. Opt. 1986. V. 25. P. 2434–2439. DOI: 10.1364/AO.25.002434
41. Gentry B., Strow L.L. Line mixing in a N2-broadened CO2 Q branch observed with a tunable diode laser // J. Chem. Phys. 1987. V. 86. P. 5722. DOI: 10.1063/ 1.452770.
42. Gross L.A., Griffiths P.R. Pressure and temperature dependence of the self-broadened linewidths of the carbon dioxide laser bands // Appl. Opt. 1987. V. 26, N 11. P. 2250–2255, DOI: 10.1364/AO.26.002250.
43. Johns J.W.C. Absolute intensity and pressure broadening measurements of CO2 in the 4.3-µm region // J. Mol. Spectrosc. 1987. V. 125, N 2. P. 442–464. DOI: 10.1016/ 0022-2852(87)90109-3.
44. Dana V., Valentin A. Determination of line parameters from FTS spectra // Appl. Opt. 1988. V. 27. P. 4450–4453. DOI: 10.1364/AO.27.004450.
45. Huet T., Lacome N., Levy A. Linewidths and strengths in the Q branch of the 1000 < 0110 transition of CO2 near 14µm // J. Mol. Spectrosc. 1988. V. 128, N 1. P. 206–215. DOI: 10.1016/0022-2852(88)90218-4.
46. Margottin-Maclou M., Dahoo P., Henry A., Valentin A., Henry L. Self-, N2-, and O2-broadening parameters in the ν3 and ν1 + ν3 bands of 12C16O2 // J. Mol. Spectrosc. 1988. V. 131, N 1. P. 21–35. DOI: 10.1016/ 0022-2852(88)90102-6.
47. Rosenmann L., Perrin M.Y., Hartmann J.M., Taine J. Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K // J. Quant. Spectrosc. Radiat. Transfer. 1988. V. 40, N 5. P. 569–576. DOI: 10.1016/0022-4073(88)90137-9.
48. Rosenmann L., Perrin M.Y., Taine J. Collisional broadening of CO2 IR lines. I. Diode laser measurements for CO2–N2 mixtures in the 295–815 K temperature range // J. Chem. Phys. 1988. V. 88, N 5. P. 2995. DOI: 10.1063/1.453940.
49. Dana V., Valentin A., Hamdouni A., Rothman L.S. Line intensities and broadening parameters of the 11101 < 10002 band of 12C16O2 // Appl. Opt. 1989. V. 28. P. 2562–2566. DOI: 10.1364/AO.28.002562.
50. Suarez C.B., Valero F.P. Temperature dependence of self-broadened halfwidths of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1990. V. 43, N 4. P. 327–334. DOI: 10.1016/0022-4073(90)90022-X.
51. Dana V., Mandin J.-Y., Guelachvili G., Kou Q., Morillon-Chapey M., Wattson R.B., Rothman L.S. Intensities and self-broadening coefficients of 12C16O2 lines in the laser band region // J. Mol. Spectrosc. 1992. V. 152, N 2. P. 328–341. DOI: 10.1016/0022-2852(92)90073-W.
52. Devi V.M., Benner D.C., Rinsland C.P., Smith M.A.H. Measurements of pressure broadening and pressure shifting by nitrogen in the 4.3-µm band of 12C16O2 // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 48, N 5.  P. 581–589.  DOI: 10.1016/0022-4073(92)90122-K.
53. Mandin J.Y., Dana V., Badaoui M., Barbe A., Hamdouni A., Plateaux J.J. Measurements of pressure-broadening and pressure-shifting coefficients from FT spectra // J. Mol. Spectrosc. 1994. V. 164, N 2, P. 328–337. DOI: 10.1006/jmsp.1994.1078.
54. Mandin J.Y., Dana V., Allout M.Y., Regalia L., Barbe A., Plateaux J.J. Line Intensities and Self-Broadening Coefficients in the 10012–10001 Band of 12C16O2 Centered at 2224.657 cm–1 // J. Mol. Spectrosc. 1995. V. 170, N 2. P. 604–607. DOI: 10.1006/ jmsp.1995.1095.
55. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Air- and N2-broadening coefficients and pressure-shift coefficients in the 12C16O2 laser bands // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, N 3. P. 137–149. DOI: 10.1016/S0022-4073(97)00113-1.
56. Corsi C., D’Amato F., De Rosa M., Modugno G. High- resolution measurements of line intensity, broadening and shift of CO2 around 2 µm // Eur. Phys. J. D. 1999. V. 6. P. 327–332.
57. De Rosa M., Corsi C., Gabrysch M., D’Amato F. Collisional Broadening and Shift of Lines in the 2v1+2v2+v3 Band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 61, N 1. P. 97–104. DOI: 10.1016/S0022-4073(97)00207-0.
58. Corsi C., D’Amato F., De Rosa M., Modugno G. High- resolution investigation of the weak ν1 + 3ν12 – ν12 + ν3 band of CO2 around 2 µm // Appl. Phys. B. 2000. V. 70, N 2. P. 879–881. DOI: 10.1007/s003400000232.
59. Henningsen J., Simonsen H. The (2201–0000) band of CO2 at 6348 cm–1: line strengths, broadening parameters, and pressure shifts // J. Mol. Spectrosc. 2000. V. 203, N 1. P. 16–27. DOI: 10.1006/jmsp.2000.8157.
60. Predoi-Cross A., Luo C., Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 2001 // J. Chem. Phys. 2000. V. 112, N 19. P. 8367–8377. DOI: 10.1063/1.481480.
61. Devi V.M., Benner D.C., Smith M.A.H., Brown L.R., Dulick M. Multispectrum analysis of pressure broa-dening and pressureshift coefficients in the 12C16O2 and 13C16O2 laser bands // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 76, N 3–4. P. 411–434. DOI: 10.1016/ S0022-4073(02)00068-7.
62. Pouchet I., Zeninari V., Parvitte B., Durry G. Diode laser spectroscopy of CO2 in the 1.6 µm region for the in situ sensing of the middle atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, N 3–4. P. 619–628. DOI: 10.1016/S0022-4073(03)00108-0.
63. Zeninari V., Vicet A., Parvitte B., Joly L., Durry G. In situ sensing of atmospheric CO2 with laser diodes near 2.05 µm: a spectroscopic study // Infrared Phys. Technol. 2004. V. 45. P. 229–237. DOI: 10.1016/ j.infrared.2003.11.004.
64. Toth R.A., Brown L.R., Miller C.E., Devi V.M., Ben-ner D.C. Self-broadened widths and shifts of 12C16O2: 4750–7000 cm–1 // J. Mol. Spectrosc. 2006. V. 239, N 2. P. 243–271, DOI: 10.1016/j.jms.2006.08.003.
65. Li J.S., Liu K., Zhang W.J., Chen W.D., Gao X.M. Pressure-induced line broadening for the (30012) – (00001) band of CO2 measured with tunable diode laser photoacoustic spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 9. P. 1575–1585. DOI: 10.1016/j.jqsrt.2007.10.014.
66. Li J.S., Liu K., Zhang W.J., Chen W.D., Gao X.M. Self-, N2- and O2-broadening coefficients for the 12C16O2 transitions near-IR measured by a diode laser photoacoustic spectrometer // J. Mol. Spectrosc. 2008. V. 252,  N 1.  P. 9–16. DOI: 10.1016/j.jms.2008.03.018.
67. Toth R.A., Brown L.R., Miller C.E., Devi V.M., Ben-ner D.C. Spectroscopic database of CO2 line parameters: 4300–7000 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 6. P. 906–921. DOI: 10.1016/ j.jqsrt.2007.12.004.
68. Gulidova O.S., Asfin R.E., Grigoriev I.M., Filip-pov N.N. Air pressure broadening and shifting of high-J lines of (00011) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2315–2320. DOI: 10.1016/ j.jqsrt.2010.04.027.
69. Arshinov K.I., Dudarenok A.S., Lavrentieva N.N., Nevdakh V.V. Collisional broadening of CO2 1000–0001 transition absorption lines by N2O molecules // J. Appl. Spectrosc. 2011. V. 78, N 5. P. 646–649. DOI: 10.1007/ s10812-011-9512-z.
70. Ngo N.H., Landsheere X., Pangui E., Morales S.B., Hartmann J.-M. Self-broadening of 16O12C16O ν3-band lines // J. Mol. Spectrosc. 2014. V. 306. P. 33–36. DOI: 10.1016/j.jms.2014.10.005.
71. Petrova T.M., Solodov A.M., Solodov A.A., Lyu-lin O.M., Borkov Yu.G., Tashkun S.A., Perevalov V.I. Measurements of CO2 line parameters in the 9250–9500 cm–1 and 10,700–10,860 cm–1 regions // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 109–116. DOI: 10.1016/j.jqsrt.2015.06.001.
72. Predoi-Cross A., Liu W., Murphy R., Povey C., Ga-mache R.R., Laraia A.L., McKellar A.R.W., Hurtmans D.R., Devi V.M. Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012←00001 and 30013←00001 bands // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1065–1079. DOI: 10.1016/ j.jqsrt.2010.01.003.
73. Thibault F., Boissoles J., Le Doucen R., Bouanich J.P., Arcas Ph., Boulet C. Pressure induced shifts of CO2 lines: measurements in the 0003–0000 band and theoretical analysis // J. Chem. Phys. 1992. V. 96, N 7. P. 4945–4953. DOI: 10.1063/1.462737.
74. Ozanne L., Bouanich J.-P., Rodrigues R., Hartmann J.-M., Blanquet G., Walrand J. Diode-laser measurements of He- and N2-broadening coefficients and line-mixing effects in the Q-branch of the v1–v2 band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, N 3. P. 337–344. DOI: 10.1016/S0022-4073(97)00133-7.
75. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Nitrogen broadening and shift coefficients in the 4.2–4.5-µm bands of CO2 // J. Mol. Spectrosc. 2003. V. 76. P. 289–307. DOI: 10.1016/S0022-4073(02)00057-2.
76. Nakamichi S., Kawaguchi Y., Fukuda H., Enami S., Hashimoto S., Kawasaki M., Umekawa T., Morino I., Suto H., Inoue G. Buffer-gas pressure broadening for the (3001)III – (0 0 0) band of CO2 measured with continuous-wave cavity ring-down spectroscopy // Phys. Chem. Chem. Phys. 2006. V. 8. P. 364–368. DOI: 10.1039/b511772k.
77. Regalia-Jarlot L., Zeninari V., Parvitte B., Grossel A., Thomas X., Heyden P., Durry G. A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 µm: a comparison between Fourier transform and diode laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 101, N 2. P. 325–338. DOI: 10.1016/j.jqsrt.2005.11.021.
78. Tanaka T., Fukabori M., Sugita T., Nakajima H., Yokota T., Watanabe T., Sasano Y. Spectral line parameters for CO2 bands in the 4.8- to 5.3-µm region // J. Mol. Spectrosc. 2006. V. 239, N 1. P. 1–10. DOI: 10.1016/j.jms.2006.05.013.
79. Predoi-Cross A., Unni A.V., Liu W., Schofield I., Holladay C., McKellar A.R.W., Hurtmans D. Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 < 00001 and 30013 < 00001 bands, line mixing, and speed dependence // J. Mol. Spectrosc. 2007. V. 245, N 1. P. 34–51. DOI: 10.1016/j.jms.2007.07.004.
80. Toth R.A., Miller C.E., Devi V.M., Benner D.C., Brown L.R. Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 246, N 2. P. 133–157. DOI: 10.1016/j.jms.2007.09.005.
81. Farooq A., Jeffries J.B., Hanson R.K. CO2 concentration and temperature sensor for combustion gases using diode- laser absorption near 2.7 µm // Appl. Phys. B. 2008. V. 90, N 3. P. 619–628. DOI: 10.1007/s00340-007-2925-y.
82. Joly L., Gibert F., Grouiez B., Grossel A., Parvitte B., Durry G., Zeninari V. A complete study of CO2 line parameters around 4845 cm–1 for Lidar applications // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 3.   P. 426–434.   DOI:  10.1016/j.jqsrt.2007.06.003.
83. Benner D.C., Miller C.E., Devi V.M. Constrained multispectrum analysis of CO2–Ar broadening at 6227 and 6348 cm–1 // Can. J. Phys. 2009. V. 87, N 5. P. 499–515. DOI: 10.1139/P09-014.
84. Casa G., Wehr R., Castrillo A., Fasci E., Gianfrani L. The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: Experimental investigation and test of semiclassical models // J. Chem. Phys. 2009. V. 130, N 18. P. 184306. DOI: 10.1063/1.3125965.
85. Cai T., Gao G., Gao X., Chen W., Liu G. Diode laser measurement of line strengths and air-broadening coefficients of CO2 and CO in the 1.57 µm region for combustion diagnostics // Mol. Phys. 2010. V. 108, N 5. P. 539–545. DOI: 10.1080/00268970903547934.
86. Devi V.M., Benner D.C., Miller C.E., Predoi-Cross A. Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 16. P. 2355–2369. DOI: 10.1016/ j.jqsrt.2010.06.003.
87. Li J.S., Durry G., Cousin J., Joly L., Parvitte B., Flamant P.H., Gibert F., Zeninari V. Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 µm for lidar application // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1411–1419. DOI: 10.1016/j.jqsrt.2011.01.030.
88. Deliere Q., Fissiaux L., Lepere M. Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide // J. Mol. Spectrosc. 2012. V. 272, N 1. P. 36–42. DOI: 10.1016/j.jms.2012.01.002.
89. Lamouroux J., Gamache R.R., Laraia A.L., Hartmann J.-M., Boulet C. Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ¬ 00001 and 30013 ¬ 00001 bands of CO2. III: Self collisions // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 12. P. 1536–1546. DOI: 10.1016/ j.jqsrt.2012.03.035.
90. Gamache R.R., Lamouroux J., Laraia A.L., Hartmann J.-M., Boulet C. Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO2, I: Collisions with N2 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 11. P. 976–990. DOI: 10.1016/ j.jqsrt.2012.02.014.
91. Li J., Durry G., Cousin J., Joly L., Parvitte B., Zeninari V. Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05 µm with a tunable diode laser spectrometer // Spectrochimic. Acta, Part A. 2012. V. 85, N 1. P. 74–78. DOI: 10.1016/ j.saa.2011.09.016.
92. Hashemi R., Rozario H., Ibrahim A., Predoi-Cross A. Line shape study of the carbon dioxide laser band I // Can. J. Phys. 2013. V. 20. DOI: 10.1139/cjp-2013-0051.
93. Lu Y., Liu A.-W., Li X.-F., Wang J., Cheng C.-F., Sun Y.R., Lambo R., Hu S.-M. Line Parameters of the 782 nm band of CO2 // Astrophys. J. 2013. V. 775, N 1. P. 71. DOI: 10.1088/0004-637X/775/1/71.
94. Predoi-Cross A., Liu W., Holladay C., Unni A.V., Schofield I., McKellar A.R.W., Hurtmans D. Line profile study of transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide perturbed by air // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 246,  N 1.  P. 98–112. DOI: 10.1016/j.jms.2007.08.008.
95. Predoi-Cross A., Liu W., Murphy R., Povey C., Gamache R.R., Laraia A.L., McKellar A.R.W., Hurtmans D.R., Devi V.M. Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1065–1079. DOI: 10.1016/j.jqsrt.2010.01.003.
96. Delière Q., Fissiaux L., Lepère M. Absolute line intensities and self-broadening coefficients in the ν3–ν1 band of carbon dioxide // J. Mol. Spectrosc. 2012. V. 272, N 1. P. 36–42. DOI: 10.1016/j.jms.2012.01.002.
97. Daneshvar L., Földes T., Buldyreva J., Vander Auwera J. Infrared absorption by pure CO2 near 3340 cm1: Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 149. P. 258–274. DOI: 10.1016/j.jqsrt.2014.08.007.
98. Devi V.M., Benner D.C., Brown L.R., Miller C.E., Toth R.A. Line mixing and speed dependence in CO2 at 6348 cm–1: Positions, intensities, and air- and self-broadening derived with constrained multispectrum analysis // J. Mol. Spectrosc. 2007. V. 242, N 2. P. 90–117. DOI: 10.1016/j.jms.2007.02.018.
99 Devi V.M., Benner D.C., Brown L.R., Miller C.E., Toth R.A. Line mixing and speed dependence in CO2 at 6227.9 cm–1: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band // J. Mol. Spectrosc. 2007. V. 245, N 1. P. 52–80. DOI: 10.1016/j.jms.2007.05.015.
100. Predoi-Cross A., Unni A.V., Liu W., Schofield I., Hol-laday C., McKellar A.R.W., Hurtmans D. Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence // J. Mol. Spectrosc. 2007. V. 245,  N 1.  P. 34–51. DOI: 10.1016/j.jms.2007.07.004.
101. Hikida T., Yamada K.M.T. N2- and O2-broadening of CO2 for the (3001)III ← (0000) band at 6231 cm1 // J. Mol. Spectrosc. 2006. V. 239, N 2. P. 154–159. DOI: 10.1016/j.jms.2006.07.001.
102. Berman R., Duggan P., Sinclair P.M., May A.D., Drummond J.R. Direct Measurements of Line-Mixing Coefficients in the ν1+ ν2 Q Branch of CO2 // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 350–363. DOI: 10.1006/ jmsp.1996.7226.
103. Larcher G., Landsheere X., Schwell M., Tran H. Spectral shape parameters of pure CO2 transitions near 1.6 µm by tunable diode laser spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 82–88. DOI: 10.1016/j.jqsrt.2015.05.013.
104. Devi V.M., Benner D.C., Miller C.E., Predoi-Cross A. Lorentz half-width, pressure-induced shift and speed-dependent coefficients in oxygen-broadened CO2 bands at 6227 and 6348 cm–1 using a constrained multispectrum analysis // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 16. P. 2355–2369. DOI: 10.1016/ j.jqsrt.2010.06.003.
105. Predoi-Cross A., Luo C., Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 2001 // J. Chem. Phys. 2000. V. 112, N 19. P. 8367–8377. DOI: 10.1063/1.481480.
106. Ахлёстин А.Ю., Лаврентьев Н.А., Привезенцев А.И., Фазлиев А.З. Базы знаний для описания информационных ресурсов в молекулярной спектроскопии. 5. Качество экспертных данных // Электронные библиотеки. 2013. Т. 16, вып. 4. URL: http://www.elbib.ru/index.phtml?page=elbib/rus/journal/2013/part4/AKLPF
107. ИС W@DIS. Онтология информационных ресурсов по спектральным свойствам молекулы диоксида углерода и ее изотопологов. URL: http://wadis.saga.iao.ru/ co2/ontology/
108. ИС W@DIS. Онтология переходов, полос и параметров контура спектральных линий молекулы диоксида углерода и ее изотопологов. URL: http://wadis.saga.iao.ru/co2/ontology/band/
109. Ахлёстин А.Ю., Козодоев А.В., Лаврентьев Н.А., Привезенцев А.И., Фазлиев А.З. Базы знаний для описания информационных ресурсов в молекулярной спектроскопии. 4. Программное обеспечение // Электронные библиотеки. 2012. Т. 15, вып. 3. URL: http: // elbib.ru/index.phtml?page=elbib/rus/journal/2012/part3/AKLPF