Том 28, номер 11, статья № 2

Чеснокова Т.Ю., Ченцов А.В., Фирсов К.М. Моделирование атмосферного радиационного переноса в задачах определения общего содержания водяного пара с различными спектроскопическими банками по линиям поглощения H2O. // Оптика атмосферы и океана. 2015. Т. 28. № 11. С. 958–965.
Скопировать ссылку в буфер обмена
Аннотация:

Приводятся результаты моделирования атмосферных спектров поглощения солнечного излучения в спектральных интервалах, в которых возможно измерение содержания Н2О в атмосфере. Сделано сравнение с измеренными спектрами пропускания атмосферы солнечного излучения, рассчитано общее содержание водяного пара в вертикальном столбе атмосферы из измеренных атмосферных спектров с использованием различных спектроскопических банков данных по линиям поглощения H2O для различных метеорологических условий и зенитных углов Солнца.

Ключевые слова:

атмосферный радиационный перенос, содержание водяного пара, спектроскопические банки данных

Список литературы:


1. Fifth Assessment Report (AR5). IPCC (Intergovernmental Panel on Climate Change). URL: http://www. ipcc.ch
2. Zuev V.E., Komarov V.S. Statistical Models of the Temperature and Gaseous Components of the Atmosphere. Dordrecht: D. Reidel Publishing Company, 1987. 306 p.
3. MODIS Atmosphere. URL: http://modis-atmos.gsfc. nasa.gov/
4. Atmospheric Infrared Sounder (AIRS). URL: http:// airs.jpl.nasa.gov/data/overview
5. AERONET. URL: http://aeronet.gsfc.nasa.gov/
6. Network for the Detection of Atmospheric Composition Change (NDACC). URL: http://www.ndsc.ncep.noaa.gov/
7. Wunch D., Toon G.C., Blavier J.-F.L., Washenfelder R.A., Notholt J., Connor B.J., Griffith D.W.T., Sherlock V., Wennberg P.O. The total carbon column observing network // Phil. Tran. Royal Soc. A. 2011. V. 369, N 1943. P. 2087–2112.
8. Семенов А.О., Виролайнен Я.А., Тимофеев Ю.М., Поберовский А.В. Сравнение наземных ИК-спектроскопических измерений общего содержания водяного пара с данными радиозондовых измерений // Оптика атмосф. и океана. 2014. Т. 27, № 11. С. 976–980.
9. Shephard M.W., Clough S.A., Paynel V.H., Smith W.L., Kireev S., Cady-Pereira K.E. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx // Atmos. Chem. Phys. 2009. V. 9. P. 7397–7417.
10. Milz M., Glatthor N., Stiller G.P., von Clarmann T. Dependence of water vapour results for MIPAS/Envisat on the spectral lines used for the retrieval // Geophys. Res. Abstracts. 2005. V. 7. P. 07234.
11. Frankenberg C., Bergamaschi P., Butz A., Houweling S., Meirink J.F., Notholt J., Petersen A.K., Schrijver H., Warneke T., Aben I. Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT // Geophys. Res. Lett. 2008. V. 35. L15811. DOI: 10.1029/2008GL034300.
12. Chesnokova T.Yu., Boudon V., Gabard T., Gribanov K.G., Zakharov V.I., Firsov K.M. Near-Infrared Radiative Transfer Modeling To Retrieve Atmospheric Methane Total Amount // Solar Radiation: Protection, Management and Measurement Techniques / Ed. by Fatih Onur Hocaoglu. N.Y.: Nova Science Publishers, 2012. Chapter 2. P. 23–41.
13. Chesnokova T.Yu., Kapitanov V.A., Ponomarev Yu.N., Osipov K.Yu. High Resolution Spectra of Methane and Interfering Gases and their Application to the Atmospheric Radiative Transfer Simulation in the Methane Concentration Retrieval Tasks // Methane in the Environment: Occurrence, Uses and Production / Ed. by Angelo Basile. N.Y.: Nova Science Publishers, 2013. Chapter 2. P. 15–42.
14. Rothman L.S., Gordon, I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Cam-pargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simecková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
15. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrink A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50
16. Lodi L., Tennyson J., Polyansky O.L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule // J. Chem. Phys. 2011. V. 135, iss. 3. P. 034113-10.
17. Lodi L., Tennyson J. Line lists for H218O and H217O based on empirical line positions and ab initio intensities // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, iss. 11. P. 850–858.
18. Jacquinet-Husson N., Crepeau L., Armante R., Boutammine C., Chédin A., Scott N.A., Crevoisier C., Capelle V., Boone C., Poulet-Crovisier N., Barbe A., Campargue A., Benner D.C., Benilan Y., Bézard B., Boudon V., Brown L.R., Coudert L.H., Coustenis A., Dana V., Devi V.M., Fally S., Fayt A., Flaud J.-M., Goldman A., Herman M., Harris G.J., Jacquemart D., Jolly A., Kleiner I., Kleinböhl A., Kwabia-Tchana F., Lavrentieva N., Lacome N., Xu Li-Hong, Lyulin O.M., Mandin J.-Y., Maki A., Mikhailenko S., Miller C.E., Mishina T., Moazzen-Ahmadi N., Müller H.S.P., Nikitin A., Orphal J., Perevalov V., Perrin A., Petkie D.T., Predoi-Cross A., Rinsland C.P., Remedios J.J., Rotger M., Smith M.A.H., Sung K., Tashkun S., Tennyson J., Toth R.A., Vandaele A.-C., Vander Auwera J. The 2009 edition of the GEISA spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 15. P. 2395–2445.
19. Partridge H., Schwenke D. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 1997. V. 106, N 11. P. 4618–4639.
20. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high accuracy computed water line list – BT2 // Mon. Notic. Roy. Astron. Soc. 2006. V. 368. P. 1087.
21. Mikhailenko S.N., Albert K.A.K., Mellau G., Klee S., Winnewisser B.P., Winnewisser M., Tyuterev V.G. Water vapor absorption line intensities in the 1900–6600 cm−1 region // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, iss. 16. P. 2687–2696
22. Mikhailenko S.N., Le W., Kassi S., Campargue A. Weak water absorption lines around 1.455 and 1.66 μm by CW-CRDS // J. Mol. Spectrosc. 2007. V. 244, iss. 2. P. 170–178.
23. Jenouvrier A., Daumont L., Regali-Jarlot L., Tyuterev V.G., Carleer M., Vandaele A.C., Mikhailenko S., Fally S. Fourier Transform Measurements of water vapor line parameters in the 4200–6600 cm–1 region // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105, iss. 2. P. 326–355.
24. Shillings J.L., Ball S.M., Barber M.J., Tennyson J., Jones R.L. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list // Atmos. Chem. Phys. 2011. V. 11, iss. 9. P. 4273–4287.
25. Chesnokova T.Yu., Voronin B.A., Bykov A.D., Zhuravleva T.B., Kozodoev A.V., Lugovskoy A.A., Tennyson J. Calculation of solar radiation atmospheric absorption with different H2O spectral line data banks // J. Mol. Spectrosc. 2009. V. 256, iss. 1. P. 41–44.
26. Coudert L.H., Wagner G., Birk M., Baranov Yu.I., Lafferty W.J., Flaud J.-M. The H162O molecule: Line position and line intensity analyses up to the second triad // J. Mol. Spectrosc. 2008. V. 251, iss. 1–2. P. 339–357.
27. Tolchenov R., Tennyson J. Water line parameters from refitted spectra constrained by empirical upper state levels: study of the 9500–14500 cm−1 region // Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 8. P. 559–568.
28. Voronin B.A., Mishina T.P., Lavrentyeva N.N., Chesnokova T.Y., Barber M.J., Tennyson J. Estimation of the J´J´´ dependence of water vapor line broadening parameters // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2308–2314.
29. Anderson G., Clough S., Kneizys F., Chetwynd J., Shettle E. AFGL Atmospheric Constituent Profiles (0–120 km), Air Force Geophysics Laboratory. AFGL-TR-86-0110. Environ. Res. Paper. 1986. N 954.
30. Atmospheric Fourier Station in Kourovka Astronomical Observatory (Ural State University). URL: http:// www.remotesensing.ru/fts_sta.html
31. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Amer. Meteorol. Soc. 1996. V. 77. P. 437–471.
32. Зайдель А.Н., Островская Г.В., Островский Ю.И. Техника и практика спектроскопии. М.: Наука, 1972. 375 с.
33. Fontenla J., White O.R., Fox P.A., Avrett E.H., Kurucz R.L. Calculation of solar irradiances. I. Synthesis of the solar spectrum // Astrophys. J. 1999. V. 518, iss. 1. P. 480–500.
34. Sun irradiance. URL: http://kurucz.harvard.edu/sun/ irradiance2008/
35. Palm M. Theoretical background SFIT4 // Sfit4 Error Analysis Workshop. Tsukuba, Japan. June. 2013.
36. MODIS Terra and Aqua Monthly Level-3. Data Atmosphere Monthly Global 1X1 Degree Products. URL: http: //gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi? instance_id= MODIS_MONTHLY_L3


Вернуться