Том 21, номер 01, статья № 1

Булдаков М. А., Черепанов В. Н., Нагорнова Н. С. Функции динамической поляризуемости молекул LiH и Li2. // Оптика атмосферы и океана. 2008. Т. 21. № 01. С. 5-12.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Предложено аналитическое описание тензора динамической электронной поляризуемости αii(R, ω) двух-атомных молекул LiH и Li2 как функций их межъядерного расстояния R и частоты внешнего электромагнитного поля ω. Описание базируется на оценках верхних и нижних границ αii(R, ω), которые рассчитываются с помощью известных функций статической поляризуемости молекулы αii(R, 0), конечного числа энергий возбужденных электронных состояний молекулы Em(R) и моментов электродипольных переходов (di)0m(R).

Список литературы:

1. Rychlevski J. Frequency dependent polarizabilities for the ground state of H2, HD, and D2 // J. Chem. Phys. 1983. V. 78. N 12. P. 7252-7259.
2. Buldakov M.A., Cherepanov V.N., Nagornova N.S. Dynamic polarizability functions of the hydrogen molecule // Comput. Lett. 2007. V. 3 (in press).
3. Bishop D.M., Cheung L.M. Accurate one- and two-electron diatomic molecular calculations // Adv. Quantum Chem. 1980. V. 12. P. 1-42.
4. Sasagane K., Mori K., Ichihara A., Itoh R. The multiconfiguration time-dependent Hartree-Fock method based on a closed-shell-type multiconfiguration self-consistent field reference state and its application to the LiH molecule // J. Chem. Phys. 1990. V. 92. N 6. P. 3619-3632.
5. Булдаков М.А., Черепанов В.Н. Функции динамической поляризуемости молекул H2 и N2 // Оптика атмосф. и океана. 2005. Т. 18. № 9. С. 825-830.
6. Pecul M., Rizzo A. Linear response coupled calculation of Raman scattering cross sections // J. Chem. Phys. 2002. V. 116. N 4. P. 1259-1268.
7. Merawa M., Begue D., Pouchan C. Time-dependent gauge-invariant calculations of the dynamic polarizabilities of NO+ in its electronic ground state X1Σ+ // J. Mol. Struct.: THEOCHEM. 2003. V. 633. N 2-3. P. 157-161.
8. Merawa M., Dargelos A. Theoretical determination of electric properties and Raman intensities of HCl and HF // J. Mol. Struct.: THEOCHEM. 2000. V. 528. N 1-3. P. 37-48.
9. Svendsen E.N., Oddershede J. Ab initio calculation of the Raman intensity of the N2 molecule // J. Chem. Phys. 1979. V. 71. N 7. P. 3000-3005.
10. Oddershede J., Svendsen E.N. Dynamic polarizabilities and Raman intensities of CO, N2, HCl, and Cl2 // Chem. Phys. 1982. V. 64. N 3. P. 359-369.
11. Stroyer-Hansen T., Svendsen E.N. Ab initio calculation of the dynamic polarizability of N2 // J. Chem. Phys. 1986. V. 84. N 3. P. 1950-1951.
12. Merawa M., Rerat M., Bussery-Honvault B. Intramolecular dependence of the frequency-dependent polarizabilities of K2 (a3Σu+) and van der Waals dispersion coefficients for X + K2,
X2 + K and X2 + K2 (X = Li, Na, K) // J. Mol. Struct.: THEOCHEM. 2003. V. 633. N 2-3.
P. 137-144.
13. Cheung L.M., Bishop D.M., Drapcho D.L., Rosenblatt G.M. Relative Raman line intensities for H2 and for D2. Correction factors for molecular non-rigidity // Chem. Phys. Lett. 1981. V. 80. N 3. P. 445-450.
14. Reinsch E.A. Calculation of dynamic polarizabilities of He, H2, Ne, HF, H2O, NH3, and CH4 with MC - SCF wave functions // J. Chem. Phys. 1985. V. 83. N 11. P. 5784-5791.
15. Boutalib A., Gadea F.X. Ab initio adiabatic potential-energy curves of the LiH molecule // J. Chem. Phys. 1992. V. 97. N 2. P. 1144-1156.
16. http://www.physics.nist.gov/cgi-bin/ASD/energy1.pl
17. Partridge H., Langhoff S.R. Theoretical treatment of the X1Σ+, A1Σ+, and B1Π, states of LiH // J. Chem. Phys. 1981. V. 74. N 4. P. 2361-2371.
18. Merawa M., Begue D., Dargelos A. Ab initio calculation of the polarizability for the ground state X1Σ+ and the first low-lying excited states a3Σ+ and A1Σ+ of LiH and NaH // J. Phys. Chem. A. 2003. V. 107. N 45. P. 9628-9633.
19. Rerat M., Merawa M., Pouchan C. Performance of a gauge-invariant method on calculated dynamic polarizabilities // Phys. Rev. A. 1992. V. 45. N 9. P. 6263-6267.
20. Chernov V.E., Dorofeev D.L., Kretinin I.Yu., Zon B.A. Method of the reduced-added Green function in the calculation of atomic polarizabilities // Phys. Rev. A. 2005. V. 71. 022505.
21. Merawa M., Rerat M., Pouchan C. Dynamic polarizabilities and van der Waals coefficients for the ground 22S and excited 24P0 states of Li // Phys. Rev. A. 1994. V. 49. N 4. P. 2493-2497.
22. Tang A.Z., Chan F.T. Dynamic multipole polarizability of atomic hydrogen // Phys. Rev. A. 1986. V. 33. N 6. P. 3671-3678.
23. Bartolotti L.J., Xie Q. Dipole Cauchy moments of the atoms H through Ar. An application of the hydrodynamic formulation of time-dependent Kohn-Sham theory using the atomic gradient expansion of the exchange-correlation energy density functional // Theor. Chim. Acta. 1990. V. 77. N 4. P. 239-251.
24. Silvi B., Fourati N. Coupled Hartree-Fock method for the calculation of Cauchy moments for atomic and molecular dynamic polarizabilities // Mol. Phys. 1984. V. 52. N 2. P. 415-430.
25. Schmidt-Mink I., Muller W., Meyer W. Ground- and excited-state properties of Li2 and Li2+ from ab initio calculations with effective core polarization potentials // Chem. Phys. 1985. V. 92. N 2-3. P. 263-285.
26. Konowalow D.D., Fish J.L. The molecular electronic structure of the twenty-six lowest lying states of Li2 at short and intermediate internuclear separations // Chem. Phys. 1984. V. 84. N 3. P. 463-475.
27. Muller W., Meyer W. Static dipole polarizabilities of Li2, Na2 and K2 // J. Chem. Phys. 1986. V. 85. N 2. P. 953-957.
28. Ratchliff L.B., Fish J.L., Konowalow D.D. Electronic transition dipole moment functions among the twenty six lowest-lying states of Li2 // J. Mol. Spectrosc. 1987. V. 122. N 2. P. 293-312.
29. Spelsberg D., Lorenz T., Meyer W. Dynamic multipole polarizabilities and long range interaction coefficients for the systems H, Li, Na, K, He, H-, H2, Li2, Na2, and K2 // J. Chem. Phys. 1993. V. 99. N 10. P. 7845-7858.