В.И. Стариков

ОСОБЕННОСТИ РЕДУКЦИИ ЭФФЕКТИВНОГО ГАМИЛЬТОНИАНА ДЛЯ ВЗАИМОДЕЙСТВУЮЩИХ СОСТОЯНИЙ В НЕЖЕСТКИХ МОЛЕКУЛАХ ТИПА Н₂О

Рассмотрены особенности редукции эффективного гамильтониана для взаимодействующих колебательных red cocroяний в нежестких молекулах типа H₂O. Показано, что редуцированные формы операторов H_{nm}^{red} , описывающие взаимодействия колебательных состояний (*n*) и (*m*), зависят от степени возбуждения в этих состояниях колебательного квантового числа v_2 , связанного с колебанием большой амплитуды.

1. Введение

При анализе колебательно-вращательных спектров нежестких молекул типа H_2O были выявлены некоторые особенности. Они заключаются в том, что 1) эффективный вращательный гамильтониан, записанный для изолированного колебательного состояния в виде ряда по операторам углового момента, является расходящимся рядом; 2) спектроскопические параметры, стоящие при степенях оператора J_z (z – ось линеаризации молекулы, вдоль которой тензор инерции молекулы является минимальным), сильно меняются с возбуждением квантового числа v_2 , связанного с колебанием большой амплитуды. С теоретической точки зрения эти особенности исследованы в предыдущих работах [1–3].

Естественно полагать, что эти особенности повлияют на вид редуцированного эффективного гамильтониана, записанного для группы резонирующих колебательных состояний. Рассмотрим пример резонанса Ферми, когда взаимодействуют два колебательных состояния (1) = (1, 0, 0) и (2) = (0, 2, 0) одного типа симметрии $((v_1, v_2, v_3) - колебательные состояния; <math>v_i - колебательные квантовые числа)$. Эффективный гамильтониан для пары указанных состояний в базисе колебательных волновых функций имеет форму матрицы 2×2

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix},$$
(1.1)

в котором диагональные операторы H_{nn} имеют вид

$$H_{nn} = H_0^{(n)} + \sum_{p,q,r} h_{pqr}^{(n)} J^{2q} \{ J_+^{2p} (J_z + p)^{2r} + (J_z + p)^{2r} J_-^{2p} \},$$
(1.2)
где $p + q + r = 2, 3, ...,$

^M

$$H_0^{(n)} = E_n + A^{(n)} J_z^2 + B^{(n)} J^2 + C^{(n)} (J_+^2 + J_-^2)$$

(n = 1, 2)

(1.3)

– есть оператор нулевого приближения. Оператор H_{12} , описывающий взаимодействие колебательных состояний, с точностью до J^3 (с точностью до слагаемых, содержащих третью степень операторов углового момента) записывается в форме [4]

$$H_{12} = F_0 + F_{020}J^2 + F_{002}J_z^2 + F_{200}(J_+^2 + J_-^2) + F_{201}\{J_+^2(J_z + 1) - (J_z + 1)J_-^2\}.$$
(1.4.)

Особенности редукции эффективного гамильтониана

Преобразованный вращательными контактными преобразованиями (КП) гамильтониан \widetilde{H} имеет вид

$$\widetilde{H} = e^{iS} H e^{-iS} = \begin{bmatrix} \widetilde{H}_{11} & \widetilde{H}_{12} \\ \\ \\ \widetilde{H}_{21} & \widetilde{H}_{22} \end{bmatrix}.$$
(1.5)

В этой формуле генератор преобразования S также имеет вид двумерной матрицы

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix},$$
 (1.6)

Операторы \tilde{H}_{nm} из формулы (1.5) удовлетворяют соотношениям [4, 5, 8]

$$\widetilde{H}_{nn} = H_{nn} + [iS_{nn}, H_{nn}] + i (S_{nm} H_{mn} - H_{nm} S_{mn}) + \dots;$$
(1.7)

$$\widetilde{H}_{12} = H_{12} + i \left(S_{11} H_{12} - H_{12} S_{22} \right) + i \left(S_{12} H_{22} - H_{11} S_{12} \right) + \dots,$$
(1.8)

$$n, m = 1, 2$$

Генераторы преобразования S_{nn} переводят H_{nn} к редуцированному виду H^{red} , полученному Ватсоном [6] для изолированного колебательного состояния. Редуцированными будем называть такие операторы H_{nm} , в которых параметры преобразования (параметры в *S* генераторах) выбраны определенным образом. Например, главный по величине генератор S_{nn} имеет вид

$$iS_{nn} = \varepsilon_{21}^{(n)} \{ J_{+}^{2} (J_{z} + 1) - (J_{z} + 1) J_{-}^{2} \},$$
(1.9)

в котором параметр $\varepsilon_{21}^{(n)}$ выбирается из условия

$$\tilde{h}_{200}^{(n)} = h_{200}^{(n)} + 2 \,\varepsilon_{21}^{(n)} \,C^{(n)} = 0, \tag{1.10}$$

позволяющего устранить в операторе \tilde{H}_{nn} слагаемое $\tilde{h}_{200}^{(n)}$ ($J_{+}^4 + J_{-}^4$) и перевести таким образом \tilde{H}_{nn} , выписанный до J_{+}^4 , к редуцированному виду H_{nn}^{red} , имеющему в базисе вращательных волновых функций симметричного волчка |J, K > матричные элементы $< J, K | H_{nn}^{\text{red}} | J, K + \Delta K >$ только с $\Delta K = 0, \pm 2$ (трехдиагональный вид эффективного вращательного гамильтониана при отсутствии случайных резонансов).

Для нежестких молекул, как отмечено выше, характерно сильное изменение спектроскопических параметров, стоящих при степенях оператора J_z , с возбуждением квантового числа v_2 . Следствием этого является тот факт, что уже в нулевом приближении $A^{(1)} \neq A^{(2)}$ (как, например, для H₂O [7]). Это приводит к тому, что в уравнении (1.8) в слагаемом $H_{22} - H_{11} = (E_2 - E_1) + (A^{(2)} - A^{(1)}) J_z^2 + ...$ второе слагаемое должно быть учтено. Если ввести

$$H_0^{(\pm)} = \{H_0^{(1)} \pm H_0^{(2)}\}/2, \tag{1.11}$$

то уравнение (1.8) примет вид

$$\widetilde{H}_{12} = H_{12} + [iS_{12}, H_0^{(+)}] + \{iS_{12}, H_0^{(-)}\} + [iS, H_{12}] + \dots$$
(1.12)

В этом уравнении учтено, что $\varepsilon_{12}^{(1)} \cong \varepsilon_{12}^{(2)}$, так что $S_{11} \cong S_{22} \cong S$ (определенные из (1.10) параметры $\varepsilon_{12}^{(n)}$ выражаются через параметры $h_{200}^{(n)}$ и $C^{(n)}$, которые слабо зависят от *n*). Уравнение (1.12) отличается от аналогичного уравнения, используемого для полужестких молекул, наличием антикоммутатора $\{iS_{12}, H_0^{(-)}\}$ (см., например, [4, 5]). Первый по порядку генератор преобразования *iS*₁₂ имеет вид [4]

$$iS_{12} = \gamma_{20} \left(J_{+}^{2} + J_{-}^{2} \right) + \dots$$
 (1.13)

Пренебрегая в \tilde{H}_{12} слагаемым [iS, H_{12}], который не меняет вида \tilde{H}_{12} и дает вклады более высокого порядка, находим, что

$$\widetilde{H}_{12} = F_0 + F_{020} J^2 + F_{002} J^2_z + \widetilde{F}_{200} (J^2_+ + J^2_-) + \widetilde{F}_{201} \{J^2_+ (J_z + 1) - (J_z + 1) J^2_-\} + 2 \gamma_{20} A^{(-)}_{12} \{J^2_+ (J_z + 1)^2 + (J_z + 1)^2 J^2_-\} + \dots$$

$$(1.14)$$

В этом выражении

$$\widetilde{F}_{200} = F_{200} + \{ (E_2 - E_1) + 2A_{12}^{(-)} \} \gamma_{20};$$
(1,15)

$$\widetilde{F}_{201} = F_{201} - 4 A_{12}^{(+)} \gamma_{20}, \tag{1.16}$$

а величины $A_{12}^{(\pm)}$ определяются из выражения

$$A_{12}^{(\pm)} = (A^{(1)} \pm A^{(2)})/2.$$

Выбирая параметр $\gamma_{20} = F_{201}/4 A_{12}^{(+)}$, можно устранить из оператора \tilde{H}_{12} слагаемое, содержащее параметр \tilde{F}_{201} , и привести его таким образом к редуцированному виду H_{12}^{red} . Тем не менее в H_{12}^{red} останется слагаемое

$$\Delta H_{12} = 2 \gamma_{20} A_{12}^{(-)} \{ J_{+}^{2} (J_{z} + 1)^{2} + (J_{z} + 1)^{2} J_{-}^{2} \},\$$

которое отсутствует в данном порядке в модели полужестких молекул, где предполагается $A_{12}^{(-)}$ = 0. Рассмотрим подробнее, к чему приводит учет эффектов нежесткости в схеме приведения гамильтониана H(1.1) к редуцированному виду.

2. Парное Ферми-взаимодействие в нежестких молекулах типа H₂O

Рассмотрим вновь эффективный гамильтониан H(1.1) для пары взаимодействующих колебательных состояний (1) = (1, 0, 0) и (2) = (0, 2, 0) одного типа симметрии. Учет сильного колебательно-вращательного взаимодействия приводит к тому, что нулевое приближение неполиномиальным образом зависит от оператора J_z (см., например, [3, 9, 10]):

$$H_n^{(0)} = E_n + h_n(J_z) + B^{(n)} J^2 + C^{(n)} (J_+^2 + J_-^2).$$
(2.1)

В частности, оператор $h_n(J_z)$ может быть представлен в форме [9, 10]

$$h_n(J_z) = A^{(n)} G_n(J_z),$$
(2.2)

в которой *А*^(*n*) – вращательная постоянная, та же, что и в формуле (1.3),

$$G_n(J_z) = 2/\alpha^{(n)} \left(\sqrt{1 + \alpha^{(n)} J_z^2} - 1\right),$$
(2.3)

а $\alpha^{(n)}$ – некоторая *J*-зависящая константа. Исходя из свойств симметрии молекулы, запишем диагональные операторы H_{nn} в виде

$$H_{nn} = H_n^{(0)} + \sum_{(p+q+r>1)} J_+^{2q} \{ J_+^{2p} (J_z + p)^{2r} h_{pqr}^{(n)} + h_{pqr}^{(n)} (J_z + p)^{2r} J_-^{2p} \},$$
(2.4.)

Особенности редукции эффективного гамильтониана

в котором $h_{pqr}^{(n)}$ – некоторые функции, зависящие от оператора J_z . В формуле (2.1) можно считать, что $B^{(n)}$ и $C^{(n)}$ не зависят от n, т.е. $B^{(n)} = B$, $C^{(n)} = C$ [7]. Оператор взаимодействия, согласно [5, 8], может быть записан как

$$H_{12} = \sum_{l,k,m} J^{2l} \{ J^{2k}_{+} (J_{z} + k)^{m} F_{2k2lm} + (-1)^{m} F_{2k2lm} (J_{z} + k)^{m} J^{2k}_{-} \}.$$
(2.5)

Здесь F_{2k2lm} в отличие от [5, 8] есть некоторые функции оператора J_z . Введем параметр малости $\lambda = 2(\bar{B}/\bar{\omega})^{1/2}$ так же, как и для обычных молекул (\bar{B} – средняя вращательная постоянная, $\bar{\omega}$ – средняя частота гармонических колебаний). Для молекулы H₂O $\lambda \sim 1/10$. Порядок слагаемых $Cq^i J^i$ (C – произвольная спектроскопическая константа) в разложении исходного гамильтониана (i – общая степень колебательных операторов q; j – общая степень вращательных операторов J) определяется как λ^{i+j-2} , следовательно, для резонанса Ферми (образованного операторами $Cq_1q_2^2 J^i$) порядок слагаемых в (2.2) есть λ^{j+1} . Такое распределение справедливо для вращательных квантовых чисел $J \sim 10$. В определении порядков есть исключения, так как параметры, стоящие при операторах J_z^{2k} , как правило, на порядок больше параметров, стоящих при операторах J^{2k} , J_{\pm}^{2k} . В таблице представлены вычисленные из потенциального поля молекулы, а также полученные в результате обработки экспериментального спектра первые по величине спектроскопические параметры молекулы H₂O. Из этой таблицы видно, что, например, слагаемые F_0 и $F_{002}J_z^2$ одного порядка. В первых порядках оператор взаимодействия H_{12} имеет вид

$$H_{12} = F_0 + F_{002} J_z^2 + (\sim \lambda^2) + F_{020} J^2 + [J_+^2 F_{200} + F_{200} J_-^2] + \dots, (\sim \lambda^3)$$
(2.6)

где $F_0 = F_{000}$.

Значения первых по порядку параметров эффективного гамильтониана для первой триады резонирующих колебательных состояний молекулы H₂O

Колебательные центры E_n и вращательные постоянные $A^{(n)}$ [7]			
Состояние	(1) = (1, 0, 0)	(2) = (0, 2, 0)	(3) = (0, 0, 1)
$E, \operatorname{cm}^{-1}$	3652,5	3156,2	3755,9
A , cm^{-1}	15,4	23,7	14,9
Параметры взаимодействия (см ⁻¹), вычисленные в [13]			
$F_0 = 45$	$F_{002} = -0,2$		
$C_{10}^{(1)} = 1$	$C_{11}^{(1)} = 0,3$		
$C_{10}^{(2)} = 0,4$		-	

Примечание. Для оценки F_{002} использовалось слагаемое $\langle \Psi_n(\rho)|B_1^{zz}(\rho)|\Psi_m(\rho) > /\sqrt{2}$ из [13].

В операторе $\tilde{H}_{12}(1.8)$ можно не учитывать вклад коммутатора [iS_{nn}, H_{12}], который не меняет вида \tilde{H}_{12} . При расчете \tilde{H}_{12} достаточно использовать следующие свойства нулевого приближения:

$$H_0^{(n)}(J_z \pm k) = H_0^{(n)}(J_z) \pm k f^{(n)}(J_z) (2 J_z \pm k);$$
(2.7)

$$[J_{+}^{k}, h_{nm}^{(+)}] = -k J_{+}^{k} (2 J_{z} + k) f_{nm}^{k^{+}},$$
(2.8)

$$\{J_{+}^{k}, h_{nm}^{(-)}\} = 2 A_{nm}^{(-)} J_{+}^{k} G (J_{z} + k/2).$$
(2.9)

В этих формулах *k* – любое целое число.

$$f_n(J_z) = A^{(n)}/G_1^{(n)} = A^{(n)}/(1 + \alpha^{(n)}J_z^2)^{1/2};$$
(2.10)

$$f_{nm}^{(\pm)} = A_{nm}^{(\pm)}/G_1; A_{nm}^{(\pm)} = (A^{(n)} \pm A^{(m)})/2, \ \alpha_{nm}^{(\pm)} = (\alpha^{(n)} \pm \alpha^{(m)})/2;$$

$$G_1 = (1 + \alpha J_z^2)^{1/2}, \ G = (2/\alpha) \ (G_1 - 1).$$

112 В.И. Стариков
(2.11)

Здесь, следовательно, $A^{(+)}$ и $\alpha = \alpha^{(+)}$ – некоторые средние величины для A и α для двух колебательных состояний. Первые по порядку генераторы преобразований *iS*₁₂ имеют вид

$$iS_{12} = (J_{+}^{2} \gamma_{20} + \gamma_{20} J_{-}^{2}) + (\sim \lambda^{3})$$

+
$$[J_{+}^{2}(J_{z}+1)\gamma_{21}-\gamma_{21}(J_{z}+1)J_{-}^{2}]+$$
 (~ λ^{4})

$$(J_{+}^{4}\gamma_{40} + \gamma_{40}J_{-}^{4}) + [J_{+}^{2}(J_{z} + 1)^{2}\gamma_{22} + \gamma_{22}(J_{z} + 1)^{2}J_{-}^{2}] + \dots \qquad (\sim\lambda^{5})$$
(2.12)

Слагаемые из iS_{12} , которые коммутируют с $h_n(J_z)$, здесь не учитываются. Рассмотрим последовательно вид редуцированного до λ^{2k} оператора ${}^{(k)}H_{12}^{red}$, получаемого при расчете формулы (1.8) с последующим фиксированием «параметров» γ . Редуцированный вращательными КП до λ^2 оператор ${}^{(1)}H_{12}^{red}$ имеет вид

$${}^{(1)}H_{12}^{\text{red}} = {}^{(1)}\widetilde{H}_{12} = F_0 + F_{002} J_z^2.$$
(2.13)

Редуцированный до λ^4

$${}^{(2)}H_{12}^{\text{red}} = F_0 + F_{002}J_z^2 + F_{020}J^2 + \{J_+^2\Psi_2^{(2)}(J_z+1) + \Psi_2^{(2)}(J_z+1)J_-^2\},$$
(2.14)

где

$$\Psi_2^{(2)}(J_z+1) = \widetilde{F}_{200} + 2\gamma_{20}A_{12}^{(-)}G(J_z+1),$$
(2.15)

а «параметр» \tilde{F}_{200} определяется соотношением (1.15). Функция γ_{20} выбирается, как и раньше, так, чтобы устранить слагаемое, содержащее F_{201} , т.е.

 $\gamma_{20} = F_{201} / 4 f_{12}^{(+)}.$

Редуцированный с точностью до λ^6 оператор $^{(3)}H_{12}^{red}$ записывается в виде

$${}^{(3)}H_{12}^{\text{red}} = {}^{(3)}H_{12,1}^{\text{red}} + \Delta^{(3)}H_{12}.$$
(2.16)

Здесь

$${}^{(3)}H_{12,1}^{\text{red}} = \sum_{i+j=0}^{2} F_{02i2j} J^{2i} J_{z}^{2j} + \{J_{+}^{2} Y_{2}^{(3)} (J_{z}+1) + Y_{2}^{(3)} (J_{z}+1) J_{-}^{2}\};$$
(2.17)

$$\Delta^{(3)}H_{12} = 2 A_{12}^{(-)} [J_{+}^{4} \gamma_{40} G (J_{z} + 2) + \gamma_{40} G (J_{z} + 2) J_{-}^{4}]; \qquad (2.18)$$

$$\Psi_{2}^{(3)}(J_{z}+1) = \Psi_{2}^{(2)}(J_{z}+1) + \widetilde{F}_{202}(J_{z}+1)^{2} + 2A_{12}^{(-)}\gamma_{22}(J_{z}+1)^{2}G(J_{z}+1), \qquad (2.19)$$

$$\widetilde{F}_{202} = F_{202} - 4 \gamma 21 f_{12}^{(+)} + \gamma 22 (E_2 - E_1).$$

Функции γ_{21} , γ_{40} и γ_{22} из генератора iS_{12} (2.12) выбраны так, чтобы в преобразованном операторе ⁽³⁾ H_{12}^{red} отсутствовали слагаемые, содержащие \tilde{F}_{400} , \tilde{F}_{401} и \tilde{F}_{203} . Эта процедура может быть продолжена до более высоких порядков λ^{2k} . В любом случае оператор ^(k) H_{12}^{red} может быть приведен к виду

$${}^{(k)}H_{12}^{\text{red}} = {}^{(k)}H_{12,1}^{\text{red}} + \Delta^{(k)}H_{12}, \tag{2.20}$$

где

Особенности редукции эффективного гамильтониана

$${}^{(k)}H_{12,1}^{\text{red}} = \sum_{i+j=0} \widetilde{F}_{02i2j} J^{2i} J^{2j} + \{J_{+}^{2} \Psi_{2}^{(k)}(J_{z}+1) + \Psi_{2}^{(k)}(J_{z}+1) J_{-}^{2}\},$$
(2.21)

а конкретный вид операторов $Y_2^{(k)}$ и $\Delta^{(k)}H_{12}$ зависит от значения k. Однако ясно, что, начиная с k = 3, т.е. с λ^6 , оператор ${}^{(k)}H_{12}^{red}$ содержит слагаемые $\Delta^{(k)}H_{12}$, которые отсутствуют для полужестких молекул и которые в базисе вращательных волновых функций |J, K > имеют матричные элементы с $\Delta K = \pm 4, \pm 6, ...$. Если $A_{12}^{(-)} = 0$, то полученные результаты совпадают с результатами [4, 8], т.е. H_{12}^{red} в любом порядке теории возмущений может быть приведен к виду, имеющему в базисе |J, K > матричные элементы с $\Delta K = 0, \pm 2$.

3. Парное взаимодействие в нежестких молекулах типа H₂O в случае резонансов Кориолиса

Рассмотрим теперь взаимодействие состояний (1) = (1, 0, 0) или (2) = (0, 2, 0) с состоянием (3) = (0, 0, 1), которые относятся к разным типам симметрии. Эффективный гамильтониан молекулы *H* для парного взаимодействия по-прежнему имеет вид (1.1). Операторы H_{nn} заданы формулой (2.4), а оператор взаимодействия H_{n3} (n = 1, 2) согласно работам [5, 8, 11] дается выражением

$$H_{n3} = \sum_{k,j,l} \{ J_{+}^{2k+1} J^{2l} C_{2k+1jl}^{(n)} (2 J_{z} + 2k + 1)^{j} + (-1)^{j+1} \Im.c. \},$$
(3.1)

в котором э.с. означает эрмитово-сопряженную часть. В первых порядках параметра малости λ оператор H_{n3} записывается в виде

$$H_{n3} = (J_{+} C_{10}^{(n)} - C_{10}^{(n)} J_{-}) + \{J_{+} (2 J_{z} + 1) C_{11}^{(n)} + C_{11}^{(n)} (2 J_{z} + 1) J_{-}\} + \dots (\sim \lambda) \text{ или } (\sim \lambda^{2})$$
(3.2)

В формуле (3.2) введено обозначение $C_{ij}^{(n)} = C_{ijl=0}^{(n)}$. Параметры $C_{2k+1jl}^{(n)}$ являются некоторыми функциями оператора J_z . Из таблицы видно, что первые два слагаемых из H_{n3} имеют одинаковый порядок, причем этот порядок мы сохраним для n = 1 и 2. Оператор H_{n3} , выписанный до λ^2 , содержит 2 слагаемых, до $\lambda^3 - 4$, до $\lambda^4 - 8$ и т.д. Так же, как и в случае Фермивзаимодействия, рассмотренного в предыдущем разделе, рассмотрим только оператор взаимо-

действия \widetilde{H}_{n3} , не обращая внимания в преобразованном операторе

$$\widetilde{H}_{n3} = H_{n3} + [iS_{n3}, H_0^{(+)}] + \{iS_{n3}, H_0^{(-)}\} + [iS_{nn}, H_{n3}] + \dots$$
(3.3)

на вклад последнего слагаемого, не меняющего вид \tilde{H}_{n3} . Исходя из (3.1), можно в общем виде выписать генератор вращательного контактного преобразования iS_{n3} [8, 11]

$$iS_{n3} = \sum_{k,l,j} \{ J_{+}^{2k+1} J^{2l} \beta_{2k+1jl}^{(n)} (2 J_{z} + 2k + 1)^{j} + (-1)^{j+1} \Im.c. \}.$$
(3.4)

В первых порядках формула (3.4) имеет вид

$$iS_{n3} = (J_{+} \beta_{10}^{(n)} - \beta_{10}^{(n)} J_{-}) + (\sim \lambda) + [J_{+} (2 J_{z} + 1) b_{11}^{(n)} - b_{11}^{(n)} (2 J_{z} + 1) J_{-}] + ... (\sim \lambda^{2})$$
(3.5)

Здесь также введено обозначение $\beta_{ij}^{(n)} = \beta_{ijl=0}^{(n)}$. Рассмотрим последовательно вид преобразованного до λ^{2k} оператора ${}^{(k)}H_{n3}$. Преобразованный до λ^2 (k = 1) оператор ${}^{(1)}H_{n3}$ имеет вид

$${}^{(1)}\widetilde{H}_{n3} = {}^{(1)}\widetilde{H}_{n3,1} + \Delta {}^{(1)}H_{n3} , \qquad (3.6)$$

где

$${}^{(1)}\widetilde{H}_{n3,1} = (J_{+}\widetilde{C}_{10}^{(n)} - \widetilde{C}_{10}^{(n)}J_{-}) + [J_{+}(2J_{z}+1)\widetilde{C}_{11}^{(n)} + \widetilde{C}_{11}^{(n)}(2J_{z}+1)J_{-}];$$
(3.7)

$$\Delta^{(1)}H_{n3} = 2A_{n3}^{(-)} \left[J_{+} G \left(J_{z} + 1/2\right) \beta_{10}^{(n)} - \beta_{10}^{(n)} G \left(J_{z} + 1/2\right) J_{-}\right].$$
(3.8)

В.И. Стариков

Параметры $\widetilde{C}_{10}^{(n)}$ и $\widetilde{C}_{11}^{(n)}$ задаются формулами

$$\widetilde{C}_{10}^{(n)} = C_{10}^{(n)} + \beta_{10}^{(n)} (E_3 - E_n), \tag{3.9}$$

$$\widetilde{C}_{11}^{(n)} = C_{10}^{(n)} + \beta_{10}^{(n)} \left(2 \ C - f_{n3}^{(+)}\right). \tag{3.10}$$

Выбор свободных параметров для ${}^{(1)}\widetilde{H}_{n_3}$ может быть осуществлен по-разному для n = 1 и для n = 2, т.к. для n = 1 слагаемым $\Delta^{(1)}H_{13}$ можно пренебречь. В этом случае параметр $\beta_{10}^{(1)}$ может быть выбран так, чтобы $\widetilde{C}_{10}^{(n)} = 0$, т.е.

$$\beta_{10}^{(1)} = C_{10}^{(1)} / (E_1 - E_3), \tag{3.11}$$

тогда

$${}^{(1)}H_{13}^{\text{red}} = [J_+ (2 J_z + 1) \widetilde{C}_{11}^{(n)} + \widetilde{C}_{11}^{(n)} (2 J_z + 1) J_-].$$
(3.12)

Для оператора ⁽¹⁾ H_{23} такой выбор не является обязательным, и параметр $\beta_{10}^{(2)}$ может быть выбран различными способами, т.е. неоднозначно, т.к. это зависит от величины «расстройки» $A_{23}^{(-)}$. Например, он может быть выбран так, чтобы устранить слагаемое более высокого порядка $\widetilde{C}_{12}^{(2)}$, где

$$\widetilde{C}_{12}^{(2)} = C_{12} - \mathbf{b}_{10}^{(2)} A_{23}^{(-)}/2.$$
(3.13)

(Здесь мы использовали разложение G функции из (3.8) в ряд по ($J_z + 1/2$)). В этом случае

$${}^{(1)}H_{23}^{\text{red}} = (J_{+}\widetilde{C}_{10}^{(2)} - \widetilde{C}_{10}^{(2)}J_{-}) + \{J_{+}(2J_{z}+1)\widetilde{C}_{11}^{(2)} + \widetilde{C}_{11}^{(2)}(2J_{z}+1)J_{-}\}.$$
(3.14)

Заметим, однако, что такой способ не является единственным. Рассмотрим преобразование до λ^4 . Оператор ⁽²⁾ \widetilde{H}_{n3} так же, как и ⁽¹⁾ \widetilde{H}_{n3} , представим в форме (3.6), т.е.

$$^{(2)}\widetilde{H}_{n3} = {}^{(2)}\widetilde{H}_{n3,1} + \Delta {}^{(2)}\widetilde{H}_{n3} , \qquad (3.15)$$

в которой ${}^{(2)}\widetilde{H}_{n3,1}$ имеет вид (3.2) и содержит 8 слагаемых, параметры которых $C^{(n)}$ связаны с 5 параметрами $\beta^{(n)}$ генератора преобразования (3.5).

Оператор $\Delta^{(2)} \widetilde{H}_{n_3}$ удобно представить в виде суммы двух слагаемых

$$\Delta^{(2)}\widetilde{H}_{n3} = \Delta^{(2)}H_{n3,1} + \Delta^{(2)}H_{n3,2} , \qquad (3.16)$$

в которой

$$\Delta^{(2)}H_{n3,1} = -2 A_{3n}^{(-)} \{ [J_+ \beta_{10}^{(n)} G (J_z + 1/2) - 9.c.] + [J_+ \beta_{11}^{(n)} G (J_z + 1/2) (2 J_z + 1) + 9.c.],$$

$$\Delta^{(2)}H_{-} = -2 A_{3n}^{(-)} \{ [J_- \beta_{10}^{(n)} G (J_z + 1/2) (2 J_z + 1)^2 - 2.c.] + J_-^2 [J_- \beta_{10}^{(n)} G (J_z + 1/2) - 2.c.]$$

$$\Delta \quad \Pi_{n3,2} = -2 \,A_{3n} \,\{[J_+ \, \mathsf{p}_{12} \,\, \mathsf{G} \,(J_z \pm 1/2) \,(2 \,J_z \pm 1) \, - \, \mathfrak{I} . \mathsf{C} .\,] \pm J \, [J_+ \, \mathsf{p}_{102} \,\, \mathsf{G} \,(J_z \pm 1/2) \, - \, \mathfrak{I} . \mathsf{C} .\,] \pm 3 \, (n)$$

+
$$[J'_{+}\beta_{30}^{(n)}G(J_{z}+3/2)-3.c.]$$
}. (3.18)

Такое представление удобно тем, что первые члены разложения *G*-функций в ряд Тейлора по степеням ($J_z + 1/2$) в слагаемом $\Delta^{(2)}H_{n3,1}$ позволяют привести оператор ${}^{(2)}\widetilde{H}_{n3}$ к форме

Особенности редукции эффективного гамильтониана

$${}^{(2)}\widetilde{H}_{n3} = {}^{(2)}\widetilde{H}'_{n3,1} + \Delta {}^{(2)}H_{n3,2} , \qquad (3.19)$$

причем оператор ${}^{(2)}\widetilde{H}'_{n_3}$ по-прежнему имеет вид (3.1). Связь параметров этого оператора $\widetilde{C}^{(n)}$ с параметрами $\beta^{(n)}$ будет рассмотрена в следующем разделе. Редуцированные формы ${}^{(2)}H^{\text{red}}_{n_3}$ будут зависеть от величины $A^{(-)}_{n_3}$. Если оператором $\Delta^{(2)}H_{n_3,2}$ (3.18) можно пренебречь, то 8 параметров в ${}^{(2)}\widetilde{H}_{n_3}$ будут связаны пятью свободными параметрами $\beta^{(n)}$ из (3.5). Их можно выбрать, как и в случае полужестких молекул, так, чтобы ${}^{(2)}H^{\text{red}}_{n_3}$ в базисе $|J,K\rangle$ содержал наименьшее число диагоналей, т.е. так, что будут отличны от нуля матричные элементы $<J,K | {}^{(2)}H^{\text{red}}_{n_3}$ $|J,K+\Delta K\rangle$ только с $\Delta K = \pm 1$. Среди слагаемых, имеющих матричные элементы с $\Delta K = \pm 1$, так же, как и в случае оператора ${}^{(1)}H^{\text{red}}_{n_3}$, можно рекомендовать оставлять слагаемые, содержащие степень J_z . Таким образом, один из возможных редуцированных операторов ${}^{(2)}H^{\text{red}}_{n_3}$, записанных до λ^4 , и для которого $A^{(-)}_{n_3} = 0$, имеет вид

$${}^{(2)}H_{n3}^{\text{red}} = \{J_+ (2 J_z + 1) \widetilde{C}_{11}^{(n)} + 9.\text{c.}\} + \{J_+ (2 J_z + 1)^2 \widetilde{C}_{12}^{(n)} - 9.\text{c.}\} + J^2 \{J_+ (2 J_z + 1) \widetilde{C}_{112}^{(n)} + 9.\text{c.}\}.$$
 (3.20)

Если оператором $\Delta^{(2)}H_{n3,2}$ пренебречь нельзя (например, для n = 2 в молекуле H₂O), то редуцированный оператор ⁽²⁾ H_{n3}^{red} содержит матричные элементы с $\Delta K = \pm 1, \pm 3$ и допускает множество форм ⁽²⁾ H_{n3}^{red} . Рассмотрим теперь преобразование до λ^6 . Исходный оператор H_{n3} (3.1), выписанный до λ^6 , согласно работе [11] содержит 18 слагаемых, а в генераторе преобразования iS_{n3} необходимо учитывать слагаемые до λ^5 ; таких слагаемых будет 12. Преобразованный оператор ⁽³⁾ H_{n3} сразу же можно представить в форме (3.19), т.е.

$$^{(3)}\widetilde{H}_{n3} = {}^{(3)}\widetilde{H}_{n3}' + \Delta {}^{(3)}H_{n3,2}, \qquad (3.21)$$

в которой ⁽³⁾ H'_{n3} имеет вид исходного оператора (3.1), а оператор $\Delta^{(3)}H_{n3,2}$ с точностью до первых членов разложения *G* функций имеет вид

$$\Delta^{(3)}H_{n3,2} = 1/2 A_{n3}^{(-)} \{ [J_{+} (\beta_{14}^{(n)} - \alpha^{(n)} \beta_{12}^{(n)}/4) (2 J_{z} + 1)^{6} - \Im.c.] + J^{2} [J_{+} (2 J_{z} + 1)^{4} (\beta_{122}^{(n)} - \alpha^{(n)} \beta_{102}^{(n)}/4) - \Im.c.] + [J_{+}^{3} (2 J_{z} + 3)^{4} (\beta_{32}^{(n)} - \alpha^{(n)} \beta_{30}^{(n)}/4) - \Im.c.] + [J_{+}^{5} (2 J_{z} + 5) \beta_{50}^{(n)} - \Im.c.] \}.$$
(3.22)

Если оператором $\Delta^{(3)}H_{n3,2}$ можно пренебречь, то по-прежнему оператор $\Delta^{(3)}\tilde{H}_{n3}$ может быть приведен к виду ${}^{(3)}H_{n3}^{red}$, имеющему матричные элементы $\langle J, K | {}^{(3)}H_{n3}^{red} | J, K + \Delta K \rangle$ только с $\Delta K = \pm 1$. При этом очевидно, что ${}^{(3)}H_{n3}^{red}$ содержит 6 слагаемых (первые три могут быть заданы, например, формулой (3.20)). Если оператором $\Delta^{(3)}H_{n3,2}$ пренебречь нельзя, то редуцированный оператор ${}^{(3)}H_{n3}^{red}$ содержит слагаемые, имеющие матричные элементы с $\Delta K = \pm 1, \pm 3, \pm 5$.

4. Приложение к первой триаде молекулы H₂O

Рассмотрим приложение развитой схемы к первой триаде резонирующих колебательных состояний молекулы H_2O . Эту группу состояний образуют три колебательных состояния: (1) = (1, 0, 0), (2) = (0, 2, 0) и (3) = (0, 0, 1). Эффективный гамильтониан имеет вид матрицы

$$H = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{22} & H_{23} \\ 3.c. & H_{33} \end{bmatrix}.$$
 (4.1)

Операторы *H*_{nm} (*n*, *m* = 1, 2, 3) заданы формулами (2.4), (2.5) и (3.1).

Генераторы преобразования S из формулы (1.5) имеют также форму матрицы

$$S = \begin{bmatrix} S_{11} & S_{12} & S_{13} \\ S_{22} & S_{23} \\ S_{22} & S_{33} \end{bmatrix},$$
(4.2)

в которой S_{nm} заданы соотношениями (1.9), (2.12) и (3.5) (для S_{nn} будет использован только главный по величине генератор). Преобразованные операторы \tilde{H}_{nm} для n = m могут быть записаны в форме

$$\widetilde{H}_{nn} = H_{nn} + i \sum_{m=1}^{5} (S_{nm} H_{mn} - H_{nm} S_{mn}) + \dots$$
(4.3)

и для $m \neq n$

$$\widetilde{H}_{nm} = H_{nm} + [iS, H_{nm}] + [iS, H_{nm}^{(+)}] + \{iS_{nm}, H_{nm}^{(-)}\} + \dots$$
(4.4)

Здесь $iS = iS_{nn}$ и n, m = 1, 2, 3. Таким образом, основное отличие предлагаемой схемы расчета от аналогичной схемы для полужестких молекул состоит в том, что 1) нулевое приближение H_n^0 (2.1) имеет существенно неполиномиальный вид, 2) в формуле (4.4) для операторов взаимодействия присутствует антикоммутатор, связанный с тем, что вращательные постоянные для различных колебательных состояний существенно различны. Рассмотрим вид преобразованных (или редуцированных) операторов взаимодействия ${}^{(k)}H_{nm}^{\text{red}}$, полученных для различных порядков параметра малости λ .

Преобразование до λ^2 . Операторы ${}^{(1)}\widetilde{H}_{12} = {}^{(1)}H_{12}^{\text{red}}$ и ${}^{(1)}\widetilde{H}_{n3}$ (n = 1, 2) задаются по формулам (2.13) и (3.6) соответственно. Примерами редуцированных форм ${}^{(1)}H_{13}^{\text{red}}$ и ${}^{(1)}H_{23}^{\text{red}}$ могут быть формы (3.12) и (3.14). Диагональные редуцированные операторы имеют вид, полученный в [6] (за исключением нулевого приближения):

$$H_{nn}^{\text{red}} = H_n^{(0)} + \tilde{h}_{020}^{(n)} J^4 + \tilde{h}_{002}^{(n)} J_z^4 + \tilde{h}_{011}^{(n)} J^2 J_z^2 + J^2 (J_+^2 \tilde{h}_{110}^{(n)} + \tilde{h}_{110}^{(n)} J_-^2) + [J_+^2 (J_z + 1)^2 \tilde{h}_{101}^{(n)} + \tilde{h}_{101}^{(n)} (J_z + 1)^2 J_-^2].$$
(4.5)

В этой формуле параметры $\tilde{h}^{(n)}$ связаны с параметром $\varepsilon_{21}^{(n)}$ теми же соотношениями, что и для полужестких молекул, за исключением параметра

$$\widetilde{h}_{101}^{(n)} = h_{101}^{(n)} - 4 \, \varepsilon_{21}^{(n)} f_n(J_z). \tag{4.6}$$

Можно показать (см., например, [12]), что для изолированного колебательного состояния эффективный вращательный гамильтониан всегда сводится к трехдиагональной (в базисе вращательных функций симметричного волчка) форме. Это значит, что операторы H_{nn}^{red} в любом порядке могут быть сведены к виду H_{nn}^{red} , который в базисе вращательных волновых функций |J, K> имеет матричные элементы $\langle J, K | H_{nn}^{red} | J, K + \Delta K \rangle$ только с $\Delta K = 0$ или $\Delta K = \pm 2$. Делая в этом операторе формальную замену $J_z^2 \Rightarrow G + \alpha G^2/4$, операторы H_{nn}^{red} можно записать в форме

$$H_{nn}^{\text{red}} = \sum_{i,j} g_{ij}^{(n)} J^{2i} G_n^j + \sum_{i,j} u_{ij}^{(n)} J^{2i} [J_+^2 G_n^j (J_z + 1) + G_n^j (J_z + 1) J_-^2],$$
(4.7)

в которой, например, $g_{00}^{(n)} = E_n$, $g_{01}^{(n)} = A^{(n)}$, Связь параметров α , g_{ij} , u_{ij} с исходными параметрами рассмотрена в работах [9, 10]. Далее будем рассматривать только форму операторов, описывающих резонансное взаимодействие.

Преобразование до λ^4 . Оператор ⁽²⁾ H_{12}^{red} , описывающий резонанс Ферми, имеет вид (2.14), т.е.

117

$${}^{(2)}H_{12}^{\text{red}} = F_0 + F_{002} J_z^2 + \tilde{F}_{020} J^2 + \{J_+^2 \Psi_2^{(2)} (J_z + 1) + \Psi_2^{(2)} (J_z + 1) J_-^2\}$$

в котором

$$\widetilde{F}_{020} = F_{020} - \beta_{10}^{(1)} C_{10}^{(2)} - \beta_{10}^{(2)} C_{10}^{(1)};$$

$$\Psi_2^{(2)} (J_z + 1) = \widetilde{F}_{200} + 2 \gamma_{20} A_{12}^{(-)} G (J_z + 1) - 2 \varepsilon_{21} F_{002} (J_z + 1)^2;$$
Особенности редукции эффективного гамильтониана

$$\widetilde{F}_{200} = F_{200} - \beta_{10}^{(1)} \left(C_{10}^{(2)} + C_{11}^{(2)} \right) + \beta_{10}^{(2)} \left(C_{10}^{(1)} + C_{11}^{(1)} \right) + \left\{ \left(E_2 - E_1 \right) + 2 A_{12}^{(-)} \right\} \gamma_{20} .$$
(4.8)

«Параметр» γ_{20} выбран из условия, чтобы $\widetilde{F}_{201} = 0$, где

$$\widetilde{F}_{201} = F_{201} - 4\gamma_{20}f_{12}^{(+)} - 2\left[\beta_{10}^{(1)}C_{11}^{(2)} + \beta_{10}^{(2)}C_{11}^{(1)}\right].$$
(4.9)

Операторы ${}^{(2)}H_{n3}$ представим в форме (3.19). Связь параметров C_{ijl} оператора ${}^{(2)}H'_{n3,1}$ с параметрами исходных операторов следующая:

$$\widetilde{C}_{10}^{(n)} = C_{10}^{(n)} + \beta_{10}^{(n)} (E_3 - E_n) - \beta_{10}^{(n')} F_0,$$

$$\widetilde{C}_{11}^{(n)} = C_{11}^{(n)} - \beta_{10}^{(n')} F_{002} + \beta_{10}^{(n)} (2 C - f_{n3}^{(+)}) + \beta_{11}^{(n)} (E_3 - E_n),$$

$$\widetilde{C}_{30}^{(n)} = C_{30}^{(n)} + \varepsilon_{21} C_{10}^{(n)} + \gamma_{20} C_{10}^{(n')} + 4 \beta_{11}^{(n)} C + \beta_{30}^{(n)} (E_3 - E_n),$$

$$\widetilde{C}_{12}^{(n)} = C_{12}^{(n)} - 5 \varepsilon_{21}/4 C_{10}^{(n)} + [\gamma_{20} C_{10}^{(n')} - 2 \beta_{10}^{(n')} F_{002}]/8 + \beta_{11}^{(n)} (3 C - f_{n3}^{(+)}) + \beta_{12}^{(n)} (E_3 - E_n) - 1/2 \beta_{10}^{(n)} A_{3n}^{(-)};$$

$$\widetilde{C}_{31}^{(n)} = C_{31}^{(n)} - 3 \beta_{30}^{(n)} f_{n3}^{(+)} + 4 \beta_{12}^{(n)} C,$$

$$\widetilde{C}_{13}^{(n)} = C_{13}^{(n)} - \beta_{12}^{(n)} f_{n3}^{(-)} - 1/2 \beta_{11}^{(n)} A_{3n}^{(-)},$$

$$\widetilde{C}_{102}^{(n)} = C_{102}^{(n)} - \beta_{10}^{(n')} F_{020} + \varepsilon_{21} C_{10}^{(n)} + \beta_{102}^{(n)} (E_3 - E_n) + 4 \beta_{11}^{(n)} C,$$

$$\widetilde{C}_{112}^{(n)} = C_{112}^{(n)} + \beta_{102} (2 C - f_{n3}^{(+)}).$$
(4.10)

Здесь *n'*, *n* = 1, 2 и *n'* ≠ *n*. Возможные редуцированные формы операторов ⁽²⁾ H_{n3}^{red} рассмотрены в предыдущем разделе. Для операторов ⁽²⁾ H_{23}^{red} появляются слагаемые с $\Delta K = \pm 3$. В редуцированном до λ^6 гамильтониане H^{red} в Ферми-блоках согласно разделу 3 появляются слагаемые, имеющие в базисе |J, K > матричные элементы с $\Delta K = \pm 4$, в блоках H_{23}^{red} – слагаемые, имеющие матричные элементы с $\Delta K = \pm 3, \pm 5$. Необходимо отметить, что над оператором *H* может быть проведено дополнительное, чисто колебательное преобразование, позволяющее устранить дополнительно один параметр из блока H_{12}^{red} [4].

5. Заключение

Таким образом, в настоящей статье показано, что редуцированные формы операторов взаимодействия H_{nm}^{red} ($n \neq m$) зависят от кратности возбуждения в состояниях (n) и (m) колебательного квантового числа v_2 , связанного с колебанием большой амплитуды. Большое отличие в степени возбуждения этого числа в состояниях (n) и (m) приводит к тому, что операторы H_{nm}^{red} в базисе вращательных волновых функций |J, K> имеют матричные элементы $<J, K | H_{nm}^{\text{red}} | J, K + \Delta K >$ с $\Delta K = 0, \pm 2, \pm 4, ...$ для блоков, описывающих Ферми-взаимодействие, и матричные элементы с $\Delta K = \pm 1, \pm 3, \pm 5, ...$ для блоков, описывающих взаимодействие типа Кориолиса. Результаты применения конкретных моделей эффективного гамильтониана для описания экспериментальных данных молекулы воды представлены в следующей работе.

Работа поддержана Международным фондом научных исследований, грант NY300.

^{1.} Starikov V.I., Machancheev B.N., Tyuterev VI.G. // J. Phys. Lett. 1984. V. 45. L. 11–15. 2. Starikov V.I., Tyuterev VI.G. // J. Mol. Spectrosc. 1982. V. 95. P. 288–296.

3. Стариков В.И., Тютерев Вл.Г. // Оптика и спектроскопия. 1987. Т. 63. № 1. С. 75-79.

4. Перевалов В.И., Тютерев Вл.Г. // Известия вузов. Физика. 1982. № 2. С. 108–112. 5. Регеvalov V.I., Туитегеv VI.G. // J. Mol. Spectrosc. 1982. V. 96. Р. 56–76. 6. Watson J.K.G. // J. Chem. Phys. 1967. V. 46. Р. 1935–1949.

7. Flaud J. M., Camy-Peyret C. // J. Mol. Spectrosc. 1974. V. 51. P. 142-150.

8. Перевалов В.И., Тютерев Вл.Г. //Центробежное искажение в молекулах при наличии случайных резонансов. Томск, 1979. 60 с. (Препринт/ИОА СО АН СССР, № 30).

9. Tyuterev V1. G. // J. Mol. Spectrosc. 1992. V. 151. P. 97–129.

10. Starikov V.I., Тазhkun S.A., Туиterev VI.G. // J. Mol. Spectrosc. 1992. V. 151. Р. 130–147.
11. Перевалов В.И., Тютерев Вл.Г. // Оптика и спектроскопия. 1982. Т. 52. № 4. С. 644–650.
12. Тютерев Вл.Г., Стариков В.И., Толмачев В.И. // ДАН СССР. 1987. Т. 297. С. 345–349.
13. Стариков В.И., Михайленко С.Н. // Оптика атмосферы. 1991. Т. 4. С. 576–583.

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 15 сентября 1995 г.

V.I. Starikov. Reduction of the Centrifugal Distortion Hamiltonian of Nonrigid H₂O-type Molecules in the Case of Accidental Resonance.

The influence of large amplitude motion on the reduced forms of the interacting operators in nonrigid H2O-type molecules is discussed. It is shown that the forms of these operators strongly depend on the excitation of bending vibrational quantum number v2. Some new forms for the Fermi-type and Coriolis-type operators for H2O molecule are proposed.