«Оптика атмосферы и океана», 8, N 11 (1995)

А.В. Карелин, С.И. Яковленко

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ He – Ne – Ar – H₂-ЛАЗЕРА, НАКАЧИВАЕМОГО ЖЕСТКИМ ИОНИЗАТОРОМ

Построена подробная нестационарная кинетическая модель пеннинговского плазменного лазера на неоне в смеси He – Ne – Ar – H₂ (λ = 585,3 нм) с учетом влияния примесей азота. Данная модель удовлетворительно описывает имеющиеся экспериментальные результаты по электронно-пучковой и ядерной накачке смесей He – Ne – Ar, Ne – H₂ и He – Ne – Ar – H₂, полученные различными экспериментальными группами, и позволяет с высокой степенью надежности проводить оптимизацию данного лазера.

Введение

За последние годы появилось большое количество работ, посвященных исследованиям пеннинговского плазменного лазера на неоне в условиях электронно-пучковой и ядерной накачки, а также экспериментальным и теоретическим исследованиям плазмохимических и радиационных процессов в данной активной среде (подробно см. [1]). Это потребовало пересмотра и существенной модификации кинетических моделей He – Ne – Ar и Ne – H₂-лазеров. В данной статье приводятся модифицированные кинетические модели и результаты численного моделирования данного лазера в условиях электронно-пучковой и ядерной накачки с учетом влияния примесных концентраций азота.

В связи с тем, что в печати появились сообщения о создании He – Ne – H₂ [2] и Ne – H₂лазеров [3] с ядерной накачкой и об улучшении генерационных характеристик He – Ne – Arлазера при малых добавках водорода [4, 5], нами была построена и исследована кинетическая модель He – Ne – Ar – H₂-лазера с учетом влияния добавок азота.

Кинетическая модель

За основу была взята кинетическая модель He – Ne – Ar-лазера на переходе $3p'[1/2]_0$ – $3s'[1/2]_1$ атома Ne с длиной волны рабочего перехода $\lambda = 585,3$ нм [6 - 9], но существенным образом модифицированная: был уточнен ряд констант принципиальных плазмохимических реакций (ПХР), введены важные новые плазмохимические процессы и убраны лишние. В модели рассматривались следующие атомы, молекулы и ионы: He*, Ne*, Ar*, Ar**, Ne^{**}₂, Ne^{*}₂, He^{*}₂, He^{*}₂, HeNe*, Ar^{*}₂, He⁺, Ne⁺, Ar⁺, He^{*}₂, Ne^{*}₂, Ar^{*}₂, He^{*}₃, Ne^{*}₃, Ar^{*}₃, HeNe⁺. В поуровневую кинетику атома неона (аналогично [6 –9]) были включены 4 группы состояний (3s, 3s'), (3p, 3p'), (4s), (5s) и 2 отдельных состояния $3p' [1/2]_0$ и $3s' [1/2]_1$.

В процессе численного моделирования исследовалось влияние состава смеси, а также параметров резонатора и накачки на выходные характеристики лазера. В связи с изучением влияния примеси молекулярного азота в модель были дополнительно включены компоненты N+, N², N, N2.

В кинетической модели He– Ne –Ar – H_2 – N_2 -лазера кроме перечисленных выше компонентов рассматривались еще: H^+ , H_2^+ , H_3^+ , $H_2(v)$, H, HeH⁺, He₂H⁺, HeH⁺₂, NeH⁺, Ne⁺₂H, ArH⁺, Ar₂H⁺, ArH⁺₂, HeH^{*}, NeH^{*}, Ne₂H^{*}, ArH^{*}. Константы скоростей приведены преимущественно в [8, 10, 11].

Совместно с уравнениями баланса числа частиц решались уравнения для газовой и электронной температур. Таким образом, число уравнений достигало 47, а число ПХР с учетом поуровневой кинетики достигает 300. Для расчетов использовался комплекс программ «ПЛАЗЕР» [12, 13].

Карелин А.В., Яковленко С.И.

Результаты расчетов

Созданная модель тестировалась на результатах экспериментальных исследований лазера с $\lambda = 585$ нм на смесях He – Ne – Ar, Ne – H₂ и He – Ne – Ar – H₂ с накачкой электронными пучками наносекундной и микросекундной длительности, а также на результатах экспериментов по ядерной накачке (подробнее см. [1]).

Перейдем к обсуждению полученных результатов. На рис. 1 представлены зависимости выходной мощности лазерного излучения от парциального давления аргона для смесей с различной степенью чистоты в условиях экспериментов [14–16]. Наличие оптимума на зависимостях обусловлено, с одной стороны, улучшением очистки нижнего рабочего уровня с ростом давления аргона, а с другой – девозбуждением верхнего рабочего состояния в реакции Пеннинга на аргоне и конкуренцией реакций трехчастичной и бинарной перезарядки ионов Ne_2^+ на аргоне с реакцией диссоциативной рекомбинации, накачивающей верхний рабочий уровень. При низких мощностях накачки преобладает влияние перезарядки, а при больших – девозбуждение в реакции Пеннинга. Видно также, что наличие в смеси небольших количеств азота на уровне сотых и тысячных долей процента приводит к существенному падению выходной мощности лазерного излучения.

Рис. 1. Зависимости генерационных характеристик лазерного излучения ($\lambda = 585,3$ нм) в смеси He – Ne – Ar от парциального давления аргона: *a* – накачка электронным пучком – *j* = 0,24 A/см², $\tau_{0.5}$ =30 мкс, E_e = 200 кзВ, p = 2 атм, содержание неона – 12%: *I* – эксперимент [15]; *2* – расчет [N₂]=5,7·10¹⁵ см⁻³; паразитное поглощение $\chi^{-}=10^{-4}$ см⁻¹; *3* – расчет, [N₂]=5,7·10¹⁵ см⁻³; $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂]=0, $\chi = 10^{-5}$ см⁻¹; *5* – кпд, расчет, условия те же, что и кривая *4*. *б* – ядерная накачка – p_{He} = 1 атм; $\bar{\Phi}$ = 1,3·10¹⁵ н/см² ·c; v = 0,13 c⁻¹; p_{Ne} = 30 Topp; $\tau_{0.5}$ = 3 мс; *L* = 150 см; *d* = 2,8 см; *V* = 900 см³: *I* – эксперимент [14]; *2* – расчет [N₂] = 2,7·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – [N₂] = 0, $\chi^{-}=0$. *e* – ядерная накачка – p_{He} = 2 атм; p_{Ne} = 300 Topp; $\bar{\Phi}$ = 2,5·10¹⁵ н/см² ·c; v = 0,088 c⁻¹; *V* = 1900 см³; *L* = 2 м; *d* = 5,5 см: *I* – эксперимент [16]; 2 – расчет, [N₂] = 2,5·10¹⁴ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *3* – расчет, [N₂] = 5,2·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, $\chi^{-}=10^{-5}$ см⁻¹; *4* – расчет, [N₂] = 2,5·10¹⁵ см⁻³, χ^{-}

Наилучшее согласие между экспериментами и расчетом находится при чистоте газов не хуже: Не – 99,99%, Ne – 99,99%, Ar – 99,9% и паразитном поглощении в зеркалах или активной среде не более одного процента.

На положение оптимума по парциальному давлению аргона влияет мощность накачки, а также количество вредной примеси азота. С ростом концентрации азота и падением мощности накачки оптимум смещается в область низких давлений аргона.

На рис. 2 приведено сравнение расчетных и экспериментальных зависимостей коэффициента усиления в смеси He – Ne – Ar(–H₂) от мощности накачки. Экспериментальная зависи-Численное моделирование He – Ne – Ar – H2-лазера 1569 мость взята из работы [17]. Видно удовлетворительное качественное и количественное согласие между расчетом и экспериментом.

Рис. 2. Зависимость коэффициента усиления от мощности накачки: *1* – экспериментальные точки (+) и аппроксимация из работы [17]; *2* – точки (·) и аппроксимация, полученные в результате расчетов при чистоте смеси 99,999%; *3* – расчетные точки (×) и аппроксимация при чистоте смеси 99,999%

В [4, 5, 18] исследовалось влияние малых добавок водорода на генерационные характеристики He – Ne – Ar-лазера. В [4, 18] предполагается, что примесь водорода уменьшает коэффициент паразитного поглощения. В [5] сделан вывод, что примесь водорода поглощения не меняет. В то же время, согласно [5], меняется коэффициент усиления. Однако указанные работы выполнены при сильно различающихся мощностях накачки, и их следует рассматривать отдельно.

Возможно, что на эксперименты [5] повлияло наличие примесей азота в рабочей камере. Так, например, в эксперименте получены коэффициенты усиления $6 \cdot 10^{-4}$ см⁻¹ в отсутствие H₂ и 1, $6 \cdot 10^{-3}$ см⁻¹ при его наличии. Наши расчеты для среды He – Ne – Ar в отсутствие H₂ при чистоте смеси 99,99% дают $\chi = 6,2 \cdot 10^{-4}$ см⁻¹ и $\chi_0 = 1,69 \cdot 10^{-3}$ см⁻¹ при чистоте смеси 99,999%, при наличии H₂ в количестве, соответствующем эксперименту [5] (0,4 Торр), и чистоте смеси 99,999% $\chi_0 = 1,61 \cdot 10^{-3}$ см⁻¹. Существенного изменения поглощения при добавке водорода относительно накачки [5] в расчете замечено не было.

Отсюда можно сделать вывод, что влияние примесей азота на уровне паспортной чистоты может оказаться более существенным, чем наличие в смеси малых добавок водорода. Поэтому для надежного установления влияния малых добавок H_2 на выходные характеристики He – Ne – Ar-лазера требуется надежный контроль за чистотой смеси в эксперименте. В настоящее время, на наш взгляд, пока еще недостаточно данных для окончательного вывода о заметной роли малых добавок H_2 в смеси He – Ne – Ar, особенно при мощностях энерговклада, характерных для ядерной накачки.

Отрицательное влияние водорода, полученное в нашем расчете для экспериментальных условий [5], связано с влиянием перезарядки ионов Ne_2^+ на H_2 , что приводит к падению потока накачки на верхний рабочий уровень, и девозбуждением верхнего рабочего уровня в реакции Пеннинга. При этом малая добавка водорода уже не сказывается существенно на заселенности нижнего рабочего состояния. Таким образом, влияние малых добавок водорода аналогично влиянию примесей азота с той лишь разницей, что скорость перезарядки Ne_2^+ на водороде существенно ниже, чем на азоте. При этом изменяется ненасыщенный коэффициент усиления, а не коэффициент поглощения.

Этот вывод косвенно подтверждается результатами измерений коэффициентов поглощения, приведенных также в [5]. При добавке водорода коэффициент поглощения заметно не изменяется. Увеличение же коэффициента усиления в эксперименте, возможно, связано с тем, что чистота смеси в опытах с водородом была выше.

Следует также отметить, что наша кинетическая модель при добавке водорода дает скорее оптимистический нежели пессимистический результат.

В [4, 18] наблюдается обратная ситуация. В этих экспериментах использовались достаточно мощная накачка и газы высокой степени чистоты (~ 99,995%). При этих условиях влияние следовых примесей азота на генерационные характеристики не было существенным. Но из-за мощной накачки имела место высокая концентрация метастабилей Ar* (~ $4 \cdot 10^{14}$ см⁻³ при $p_{\rm H_2} = 0,003$ Topp).

И хотя сечение поглощения рабочего излучения на них мало (в расчетах использовалось значение $\sigma^{-}=5 \cdot 10^{-19} \text{ см}^2$), влияние небольших добавок H₂ на уровне 0,4 – 0,8 Торр приводит к заметному изменению формы импульса генерации (рис. 3). При этом, хотя расчетная пиковая мощность *P* изменяется слабо, кпд возрастает с 0,24 до 0,36% в условиях, указанных в [18].

Рис. 3. Генерационные характеристики He–Ne–Ar–H₂-лазера: *a* – зависимость мощности генерации и кпд от пропускания резонатора *T* p_{He} =3 атм, p_{Ne} =200 Торр, p_{Ar} =30 Торр, p_{H_2} = 0,8 Торр, *j*=1,2 А/см². *1* – эксперимент [18]; *2* – расчет; *3* – расчетный кпд. δ – расчетные формы импульса генерации в условиях эксперимента [4]. p_{He} =3 атм, p_{Ne} =200 Торр, p_{Ar} =15 Торр. *1* – p_{H_2} =0,003 Торр, *2* – p_{H_2} =0,4 Торр, *3* – p_{H_2} =0,8 Торр

Влияние добавок водорода на эффективность генерации в смеси He – Ne – Ar при ядерной накачке в оптимальных условиях приведено на рис. 4. Видно, что при добавке водорода вплоть до 1 Торр кпд генерации при мощности энерговклада около 150 Вт/см³ немного растет, а при большем давлении начинает быстро падать. Эти результаты оптимизации получены в предположении чистой смеси, когда концентрация азота не превышала 10^{14} см⁻³.

Рис. 4. Влияние малых добавок водорода в смеси He – Ne – Ar на эффективность генерации – $p_{\text{He}} = 1,5$ атм, $p_{\text{Ne}} = 40$ Topp, $p_{\text{Ar}} = 15$ Topp, $\dot{W} = 150$ BT/см³

Исследованию пороговых характеристик He – Ne – Ar (H₂)-лазера соответствуют результаты, приведенные на рис. 5. Видно, что при эффективном времени жизни фотона в резонаторе 1 мкс, паразитном поглощении порядка 10^{-6} см⁻¹ и концентрации азота 10^{14} см⁻³ (т.е. фактически в идеальных условиях) пороговая мощность энерговклада для лазера на смеси He – Ne – Ar составляет

Численное моделирование He – Ne – Ar – H2-лазера 1571

около 3 Вт/см³. Однако появление небольших примесей азота или водорода приводит к заметному росту порога генерации. Аналогична, только еще более драматична, ситуация в лазере на смеси He – Ne – H₂. В оптимальных по кпд условиях ($p_{\text{He}} = 0,5$ атм, $p_{\text{Ne}} = 300$ Topp, $p_{\text{H}_2} = 30$ Topp) наличие примеси азота на уровне 0,01% приводит к повышению порога генерации до 250 Вт/см³.

Рис. 5. Зависимости энергии генерации Q и кпд лазера с ядерной накачкой на неоне от мощности накачки: 1 – энергия генерации для смеси He – Ne – Ar при $p_{He} = 1,5$ атм, $p_{Ne} = 30$ Topp, $p_{Ar} = 15$ Topp, $[H_2] = 10^{14} \text{ см}^{-3}, [N_2] = 10^{14} \text{ см}^{-3}, \chi^- = 10^{-6} \text{ см}^{-1}$, эффективное время жизни фотона в резонаторе 1 мкс; 2 - кпд генерации при тех же условиях, что 1; 3 - кпд генерации в условиях 1 и $[N_2] = 4,2\cdot10^{14} \text{ см}^{-3}$ (99,999%); 4 - то же и $[N_2] = 4,2\cdot10^{15} \text{ см}^{-3}$ (99,999%); 5 - то же при $p_{H_2} = 0,5$ Topp, чистоте смеси 99,999% и $\chi^- = 10^{-5} \text{ см}^{-1}$; 6 - кпд генерации для смеси He – Ne – H₂ при $p_{He} = 0,5$ атм, $p_{Ne} = 300$ Topp, $p_{H_2} = 30$ Topp, $\chi^- = 10^{-6} \text{ см}^{-1}$, $[N_2] = 10^{14} \text{ см}^{-3}$, эффективное время жизни фотона в резонаторе 1 мкс; 7 -то же, что и 6, но при чистоте смеси 99,999%

Заключение

1. Показано существенное влияние примесей азота в смеси (на уровне паспортной чистоты газов) на выходные характеристики лазера. Для улучшения генерационных характеристик пеннинговских плазменных лазеров на неоне следует использовать газы высокой степени чистоты и осуществлять тщательную очистку лазерной камеры. При этом возможно улучшение генерационных характеристик почти в 2 раза.

2. Проведена численная оптимизация лазера на смеси He – Ne – Ar – H₂. Оптимальные условия генерации: при накачке электронным пучком длительностью $\tau = 10$ нс – давление гелия $p_{\text{He}} = 300$ Торр, давление аргона p = 60 Торр, пропускание выходного зеркала T = 50% (длина активной среды L = 1 м), мощность энерговклада W = 400 кВт/см³, энерговклад за импульс W = 2,5 мДж/см³, кпд активной среды по вложенной в газ энергии $\eta = 0,4\%$; при накачке пучком электронов длительностью $\tau = 60$ мкс – $p_{\text{He}} = 1,5 - 2$ атм, $p_{\text{Ne}} = 150$ Торр, $p_{\text{Ar}} = 30$ Торр, $\dot{W} = 1,5$ кВт/см³ (без H₂) и 3,0 кВт/см³ (с H₂), $\eta \le 0,4\%$ (без H₂) и $\le 0,5\%$ (с H₂); в условиях ядерной накачки от импульсного реактора $\tau = 8$ мс – $p_{\text{He}} = 1,5$ атм, $p_{\text{Ne}} = 30$ Торр, $p_{\text{Ar}} = 15$ Торр, T = 15% (L = 2 м), $\dot{W} = 150$ Вт/см³, $\eta \le 0,3\%$. Введение небольших (менее 1 Торр) добавок водорода при ядерной накачке может приводить к незначительному росту кпд при мощностях накачки свыше 100 Вт/см³. Оптимальные условия генерации для лазера на смеси He – Ne – H₂ составляют: давление гелия 0,5 – 1 атм, давление неона 300 Торр, давление водорода 30 – 40 Торр, мощность энерговклада 250 – 300 Вт/см³. При этом кпд данного лазера может достигать 0,2%.

3. Рассчитаны пороговые характеристики He – Ne – Ar – H₂-лазера с ядерной накачкой. Для смеси He – Ne – Ar в условиях, близких к идеальным, порог генерации составляет около 3 Bt/cm³. В реальных условиях минимально достижимая пороговая мощность энерговклада не менее 10 Bt/cm³. Соответственно для смеси He – Ne – H₂ минимальный порог генерации составляет около 8 Bt/cm³, а реальный не менее 100 Bt/cm³.

4. Построенная нами модель позволяет с высокой степенью надежности провести оптимизацию пеннинговского плазменного лазера на неоне ($\lambda = 585,3$ нм) и ответить на целый ряд вопросов, касающихся кинетики процессов в активной среде.

Карелин А.В., Яковленко С.И.

1572

1. Карелин А.В., Яковленко С.И. Квантовая электроника. 1995. Т.22. N 8. С.769.

- 2. Miley G.H. Proc. of Spec. Conf. "Physics of Nuclear Induced Plasmas and Problems of Nuclear Pumped Lasers". -IPhPI: Obninsk, 1992. V. 1. P. 40.
- 3.Бочков А.В., Крыжановский В.А., Магда Э.П., Мухин С.Л. // Письма в ЖТФ. 1993. N 19. C. 54.
- 4. Александров А.Ю., Долгих В.А., Рудой И.Г., Сорока А.М. // Квантовая электроника. 1991. N 18. C. 673.
- 5. Ломаев М.И., Мельченко С.В., Тарасенко В.Ф., Феденев А.В. // Письма в ЖТФ. 1992. T. 18. N 24. C. 63.
- Жидков А.Г., Коваль А.В., Яковленко С.И. М., 1987. (Пре-6. Держиев В.И., принт/ИОФАН. N 233.)
- 7. Держиев В.И., Чикин К.Р., Коваль А.В. идр. М., 1988. (Препринт/МИФИ. N 094.) 8. Бойченко А.М., Держиев В.И., Жидков А.Г. идр. //Труды ИОФАН. 1989. Т. 21. С. 44.
- 9. Держиев В.И., Жидков А.Г., Коваль А.В., Яковленко С.И. // Квантовая электроника. 1989. T. 16. C. 1579.
- 10. Азимджанов Б.А., Арсланбеков Т.У., Бункин Ф.В. идр. // Квантовая электроника. 1985. T. 12. C. 1557.
- 11. Бойченко А.М., Тарасенко В.Ф., Фомин Е.А., Яковленко С.И. // Квантовая электроника. 1993. Т. 20. С. 7.
- 12. Y a k o v l e n k o S. I. // Laser Physics. 1991. V. 1. P. 565.
- 13. Середа О.В., Терских А.О., Яковленко С.И.идр.// Труды ИОФАН. 1989. Т. 21. С. 116.
- 14. Воинов А.М., Кривоносов В.Н., Мельников С.П. идр.// ДАН СССР. 1990. Т. 312. С. 864. 15. Держиев В.И., Тарасенко В.Ф., Яковленко С.И., Янчарина А.М. М., 1990. (Препринт /
- ИОФАН. N 35.)
- 16. Конак А.И., Мельников С.П., Порхаев В.В., Синянский А.А. // Квантовая электроника. В печати.
- 17. Тарасенко В. Ф., Феденев А. В. // Оптика атмосферы и океана. 1993. Т. 6. С. 679.
- 18. Александров А.Ю., Долгих В.А., Рудой И.Г., Сорока А.М. Квантовая электроника. 1991. T. 18. C. 1029.

Институт общей физики РАН,

Москва

Поступила в редакцию 21 апреля 1995 г.

A.V. Karelin, S.I. Yakovlenko. Numerical Simulation of $He - Ne - Ar - H_2$ Laser Pumped by Hard Ionizer.

A detailed time-dependent kinetic model of penning plasma He – Ne – Ar – H₂ laser (λ = 585,3 nm) taking into account the influence of nitrogen admixtures has been developed. The model is in a good agreement with experimental results on ebeam and nuclear pumping of He – Ne – Ar, Ne – H_2 , and He – Ne – Ar – H_2 mixtures obtained by different experimental groups. The model allows one to optimize the neon laser with a high degree of reliability.