В.И. Стариков

АППРОКСИМАЦИОННЫЕ ФОРМУЛЫ ДЛЯ СПЕКТРОСКОПИЧЕСКИХ ПАРАМЕТРОВ СЛАБОАСИММЕТРИЧНЫХ МОЛЕКУЛ С ВНУТРЕННИМ ВРАЩЕНИЕМ

Для слабоасимметричных молекул с внутренним вращением получены выражения для спектроскопических параметров $a_m(K)$, определяющих значения вращательной энергии молекулы. Эти выражения зависят от решения уравнения Шредингера, которое учитывает периодичность потенциальной функции и сильное взаимодействие внутреннего и внешнего вращений. Предложено искать решения этого уравнения на собственные значения в виде отношения рядов Фурье по вращательному квантовому числу *K*. Выражения для $a_m(K)$ были применены к молекуле CH₃OH, имеющей ось вращения третьего порядка.

Введение

Молекулы с внутренним вращением образуют достаточно большую группу нежестких молекул. Крутильное (торсионное) колебание большой амплитуды может проявляться уже в простых четырехатомных молекулах, таких, как H_2S_2 , N_2H_2 , H_2O_2 , ... В молекулах с большим числом атомов (CH₃NH₂, CH₃OH, ...) оно, как правило, связано с вращением группы атомов (волчков) относительно какой-либо оси. Изучение таких молекул представляет большой интерес ввиду сложности тех проблем, которые возникают при интерпретации спектров этих молекул. Кроме того, некоторые из этих молекул (например, молекула H_2O_2) входят в состав атмосферы Земли, другие молекулы (например, молекула метанола, CH₃OH) представляют собой очень богатую и продуктивную среду для молекулярных лазеров.

В настоящее время можно выделить два основных подхода, используемых при теоретическом описании спектров рассматриваемых молекул. Первый подход основан на вариационных вычислениях, в которых потенциальная функция $V_0(\gamma)$ моделируется рядом Фурье [1–5]

$$V_{0}(\gamma) = \sum_{l} V_{lN} / 2 \left(1 - \cos(N l \gamma) \right)$$
(1)

по переменной γ , описывающей торсионное движение в молекуле с осью вращения *N*-го порядка. Второй подход, широко применяемый, в частности, для молекулы метанола, основан на эмпирической формуле для вращательной энергии [6–8]

$$E(K,q,J) = \sum_{m} a_{m}(K,q) \left[J(J+1) \right]^{m} + 1/2 + (J+K)! / (J-K)! \left[S(K,q) + J(J+1) T(K,q) \right].$$
(2)

В этом выражении *J* есть главное вращательное квантовое число; *K* – проекция *J* на ось вращения волчка; *q* – совокупность остальных квантовых чисел. Второе слагаемое в (2) описывает расщепление энергетических уровней, связанное с асимметрией молекулы. Процедура идентификации спектра на основе (2) является простой и эффективной, однако число подгоночных параметров $a_m(K, q)$, определяемых для каждого *K* и *q*, является достаточно большим [8]. Разложение $a_m(K, q)$ в степенной ряд по квантовому числу *K* является расходящимся уже для малых значений *K*, и к настоящему времени других аналитических представлений для $a_m(K, q)$ не существует.

Стариков В.И.

В настоящей статье показана аналитическая зависимость спектроскопических параметров $a_m(K,q)$ от вращательного квантового числа K. Аналитические выражения для $a_m(K,q)$ связаны, в свою очередь, с решением уравнения Шредингера, которое учитывает периодичность потенциальной функции и сильное торсионно-вращательное взаимодействие в молекуле.

Аналитическое представление для зависимости торсионных энергий от вращательного квантового числа К

Рассмотрим конкретный случай молекулы с осью внутреннего вращения третьего порядка, т.е. положим N = 3 в формуле (1) и учтем только первое слагаемое в этом разложении. Тогда уравнение Шредингера, описывающее торсионное движение, примет вид

$$H_0^{\text{tor}} \phi_{n\sigma}(\gamma) = \left\{ -F \frac{\partial^2}{\partial \gamma^2} + V_3/2 \left(1 - \cos 3\gamma \right) \right\} \phi_{n\sigma}(\gamma) = E_{n\sigma} \phi_{n\sigma}(\gamma) .$$
(3)

В этом выражении коэффициент $F = h/8\pi^2 cI_{\gamma}$ (I_{γ} – тензор инерции относительно оси внутреннего вращения [1]; V_3 характеризует высоту потенциального барьера для этого вращения; n – главное торсионное квантовое число, а индекс σ описывает симметрию (периодичность) волновой функции и для N = 3 принимает три значения: 0, ±1. Уравнение (3) есть уравнение Матье [9], решение которого находят численными методами. Рассмотрим также слагаемое $W = 2p F K J_{\gamma}$ [1, 3] из исходного гамильтониана молекулы, которое описывает взаимодействие торсионного движения (оператор $J_{\gamma} = -i\partial/\partial\gamma$) и полного вращения (квантовое число K). В выражении для W параметр $p = I_{\gamma}/I_z$ определяет отношение тензора инерции I_{γ} к тензору инерции I_z относительно главной оси вращения z. Если слагаемое W рассматривается как возмущение к (3), то в теории возмущений оно генерирует ряд

$$E_{n}(K) = E_{n} + \sum_{m} \kappa_{m} (2 \ p \ F \ K)^{m}, \tag{4}$$

в котором $\kappa_1 = V_{nn}$; $\kappa_2 = -\sum_{i \neq n} V_{ni} / (E_i - E_n)$, (выражения для κ_3 , κ_4 могут быть найдены, например, в [10]).

Здесь индекс о опущен из-за краткости, $V_{ni} = \langle n\sigma | J_{\gamma} | i\sigma' \rangle$, и для $\sigma = 0$ все $\kappa_{2m+1} = 0$. Используя максимальный матричный элемент $V_{nn\pm 1}$, можно оценить (условно) радиус $R_k = K_{max}$ сходимости серии (4) из выражения

$$|V_{nn\pm 1}/(E_n-E_{n\pm 1})| 2 p F K_{max} = 1$$
,

которое ведет к следующей формуле:

$$R_{k} = |(E_{n} - E_{n\pm 1}) / V_{nn\pm 1}| (2Fp)^{-1}.$$
(5)

Используя метод непрерывных дробей [1] и значения параметров F и V_3 , можно оценить первые коэффициенты Фурье для волновых функций $\varphi_{n\sigma=0}$ и, следовательно, радиус R_k . Если радиус сходимости достаточно большой, то зависимость торсионных энергий от квантового числа K может быть выражена сериальной формулой (4). При малом R_k пользоваться теорией возмущения нельзя, и слагаемое W должно рассматриваться в нулевом приближении совместно с H_0^{tor} . Такая ситуация возникает, например, для молекулы метанола. Оценка радиуса сходимости R_k для этой молекулы показывает, что $R_k \cong 5$ для основного состояния (n = 0, $\sigma = 0$) и $R_k \cong 0,5$ для (n = 1, $\sigma = 0$), а также для состояния с n = 2, $\sigma = 0$. Для таких молекул зависимость торсионных энергий $E_{n\sigma}(K)$ от квантового числа K должна быть найдена из уравнения

$$\{FJ_{\gamma}^{2} + 2FpKJ_{\gamma} + V_{3}/2(1 - \cos(3\gamma))\}\psi_{n\sigma}(\gamma; K) = E_{n\sigma}(K)\psi_{n\sigma}(\gamma; K), \qquad (6)$$

которое также является уравнением Матье [9]. Для нахождения вида $E_{n\sigma}(K)$ может быть использовано свойство периодичности потенциальной функции $V_0(\gamma)$ так, как это сделано в [2, 11]. Волновая функция $\psi_{n\sigma}(\gamma; K)$ может быть записана в виде [5,11]

$$\psi_{n\sigma}(\gamma; K) = \exp\left[i\left(\sigma + Kp\right)\gamma\right] \sum_{m} b_{m}^{nKs} \exp\left(i3 m\gamma\right).$$
⁽⁷⁾

Из этой формулы видно, что любое изменение величины

$$\sigma(K) = \sigma + p K$$

на целое число, кратное трем, оставляет неизменным решение для волновой функции. Этот факт может быть использован для поиска $E_{n\sigma}(K)$ в виде периодической функции по величине $\theta = a' K$ ($a' = 2\pi p/3$). В [2,11] было предложено использовать для внутренней энергии $E_{n\sigma}$ разложение в ряд Фурье, которое для молекул с осью вращения 3-го порядка принимает вид

$$E_{n\sigma}(K) = \sum_{l} w_{l} \cos l(\theta - \theta_{0}) .$$
(8)

В этом выражении $\theta_0 = -(2\pi/3)\sigma$, а w_l – не зависящие от σ параметры.

В настоящей статье предлагается использовать следующее выражение для торсионных уровней энергий:

$$E_{n\sigma}(K) = \sum_{l} b_{l} \cos l(\theta - \theta_{0}) / (1 + \sum_{l} z_{l} \cos l(\theta - \theta_{0})), \qquad (9)$$

которое также является периодической функцией величины θ и которое позволяет, как показало приложение к молекуле метанола CH₃OH, существенно улучшить сходимость (9) в сравнении с (8). Выражение (9) может быть получено в приближении, аналогичном приближению <сильной связи>, широко применяемом в квантовой теории твердого тела при рассмотрении движения электрона с заданным импульсом в периодическом поле кристаллической решетки (см., например, [12, 13]). В данном случае это приближение справедливо для торсионных уровней энергий, лежащих ниже вершины потенциального барьера. В рассматриваемом приближении потенциальная функция $V_0(\gamma)$ представляется в виде суммы одномерных потенциалов, отстоящих друг от друга на величину $a = 2\pi/3$

$$V_0(\gamma) \cong \sum_m W_m(\gamma - a m),$$

а волновая функция в виде суммы волновых функций

$$\psi_n(\gamma; K) \cong \sum_m \exp[i \sigma(K) m a] \phi_n(\gamma - a m), \tag{10}$$

локализованных над отдельными потенциалами. Подстановка (10) в формулу для энергии

$$E_n(K) = \langle \psi_n | H_0^{\text{tor}} | \psi_n \rangle / \langle \psi_n | \psi_n \rangle,$$

в которой H_0^{or} определяется из (3), приводит к выражению (9), в котором знаменатель появляется из-за перекрывания волновых функций $\varphi_n(\gamma - am)$ и $\varphi_n(\gamma - al)$. Внутренняя энергия $E_n(K)$ является плавной функцией квантового числа K для фиксированных значений торсионных квантовых чисел n и τ . Квантовое число τ для данного n принимает три значения: 1,2 или 3 и связано с индексом σ соотношением [5]: для $\sigma = 0$ $K + \tau = 3$ N + 1, для $\sigma = 1$ $K + \tau = 3$ N, для

 $\sigma = -1$ $K + \tau = 3$ N + 2, N - любое целое число. Введением в формулу (9) параметра $\alpha = (2\pi/3) (1-p)$ выражение для $E_{n\tau}(K)$ можно записать в виде

$$E_{n\tau}(K) = \sum_{l} a_{l} \cos l(\alpha K - \theta_{0}') / (1 + (\sum_{l} z_{l} \cos l(\alpha K - \theta_{0}'))),$$

в котором $\theta'_0 = 0$ для $\tau = 1$; $\theta'_0 = 2\pi / 3$ для $\tau = 2$ и $\theta'_0 = -2\pi / 3$ для $\tau = 3$. Из этой формулы можно получить удобное для практического приложения выражение для комбинаций торсионных энергий

$$E_{n}^{(-)}(K) = \{ E_{n\tau=2}(K) - E_{n\tau=3}(K) \} / 2 = \sum_{l} a_{l}' \sin(\alpha K l) / (1 + \sum_{l} z_{l}' \cos(\alpha K l) + ...) =$$

= $\sum_{l} a_{l} \sin(\alpha K l) / (1 + \sum_{l} z_{l} K^{2l} + ...).$ (11)

Аналитическое представление для спектроскопических параметров $a_m(K)$

Полученное выражение для торсионных уровней энергий $E_{n\tau}(K)$ позволяет относительно просто установить аналитический вид для спектроскопических параметров $a_m(K)$. Для слабоасимметричных молекул с внутренним вращением поправки к уровням энергий, связанные с асимметрией молекулы, могут быть учтены по теории возмущения, при этом недиагональная в базисе торсионно-вращательных волновых функций матрица гамильтониана молекулы сводится к диагональной форме. Матричные элементы этой матрицы совпадают по форме с выражением (2). Для m = 0 параметр $a_0(K)$ определяет значение вращательной энергии (для гипотетического уровня с J = 0), т.е.

$$a_{0}(K) = E_{n\tau}(K) + E_{rot}(K), \qquad (12)$$

в котором второе слагаемое описывает вращение всей молекулы и может быть представлено обычным способом

$$E_{\rm rot}(K) = A K^2 - D_{\kappa} K^4 + H_{\kappa} K^6 + \dots$$

Для торсионных состояний с т = 2, 3 удобно перейти к комбинациям

$$a_0^{(\pm)}(K) = \{a_0(K, \tau = 2) \pm a_0(K, \tau = 3)\} / 2$$
(13)

и воспользоваться соотношением (11). При диагонализации матрицы по теории возмущений (ТВ) в формулах для спектроскопических постоянных $a_m(K)$ появляются знаменатели $a_0(K, \tau) - a_0(K', \tau')$, которые предполагаются <достаточно большими> и позволяют использовать ТВ (отсутствуют случайные резонансы). В противном случае матрица гамильтониана должна быть диагонализована численно. Не останавливаясь подробно на выводе параметров $a_m(K)$, приведем конечные выражения для первых коэффициентов $a_1(K)$ и $a_2(K)$, которые получены с использованием либо представления (9) для торсионных энергий, либо степенного представления для этих энергий. Так, вращательная <постоянная> $a_1(K)$ имеет вид

$$a_{1}(K) = \frac{\sum_{i} a_{i} K^{i}}{1 + \sum_{i} z_{i} \cos l(\alpha K + \theta_{0}) + \sum_{i} \widetilde{z}_{i} \sin l(\alpha K + \theta_{0})}$$

либо

$$a_{1}(K) = \sum_{i} a_{i} K^{i} / (1 + \sum_{i} z_{i} K^{i}), \qquad (14)$$

причем здесь в числителях использовано разложение тригонометрических функций в ряд по K, чтобы избежать смешивания этих функций с полиномиальными. Формула для квартичной <постоянной> $a_2(K)$ имеет вид

Аппроксимационные формулы для спектроскопических параметров

$$a_2(K) = \sum_i a_i K^i / (1 - K^2 + \sum_i z_i K^i)$$
(15)

В приведенных формулах a_i, z_i, \tilde{z}_i – варьируемые параметры, которые должны быть определены из экспериментальных значений для $a_m(K)$.

Приложение к молекуле метанола

Для молекулы метанола к настоящему времени известно большое количество экспериментальных значений параметров $a_m(K)$ (полученных в результате обработки экспериментальных данных), которые можно использовать для проверки аналитических выражений для этих параметров. Результаты такой проверки представлены в табл. 1 – 3, которые устроены следующим образом.

Таблица 1

Модель	L	$a_0^{\max} \cdot 10^4 \mathrm{cm}$	I^{-1} K
		$a_0(n=0, \tau)$	= 1)
<i>P</i> (8)	7	26,35	
$S_{i=1}^{5} a_{i} K^{2i}$			$K \le 14$
$a_0 + \frac{1}{1 + z_4 K^4 + z_6 K^6}$	7	2,6	$K \neq 9, K \neq 12$
	$a_0^{(+)} =$	$\frac{1}{2} \{ a_0(\tau = 2) \}$	$+ a_0(\tau = 3)$
P(8)	8	33,4	$K \le 14$
$a_0 + \frac{a_1 K + a_2 K^2 + a_4 K^4 + a_6 K^6 + a_8 K^8}{1 + z_1 K + z_2 K^2 + z_3 K^3}$	8	4,4	
	$a_0^{(-)} =$	$\frac{1}{2} \{ a_0(\tau = 2) \}$	$-a_0(\tau = 3)$
<i>P</i> (5)	5	13100	$K \le 10$
$\frac{a_1 \sin \left(a K\right) + a_2 \sin \left(2 \alpha K\right) + a_4 \sin \left(4 \alpha K\right)}{1 + z_1 K^2}$	5	7,1	$K \le 10$
$\Sigma^4 = 1a \sin(\alpha i K)$			$K \le 14$
$\frac{-l=1}{1+\frac{k^2}{2}+\frac{k^4}{2}}$	7	4,4	<i>K</i> ≠ 13

Качество подгонки параметров a₀(K) (из [8]) для основного состояния молекулы метанола СН₂ОН

Примечания: $a_0^{\max} = \max \left| a_0^{\max} - a_0^{\infty c} \right|$; *L* – число подгоночных параметров $a_i, z_i, \alpha, P(N) = \sum_{i=0}^N a_i K^{2i}$. Для параметра α было найдено значение 0,3970871. Для параметров a_0 были использованы значения из [8].

В первом столбце таблицы представлены аналитические формулы для $a_m(K)$, во втором столбце – число варьируемых параметров, в третьем – максимальная погрешность в подгонке экспериментальных данных, и, наконец, в последнем столбце приведены значения квантовых чисел K, для которых использовались экспериментальные $a_m(K)$ (при наличии случайных резонансов формула (2) не применима, и поэтому часть параметров $a_m(K)$ не может быть использована в обратной задаче). В табл. 1 – 3 также приведено сравнение с полиномиальными представлениями для этих параметров. В частности, из табл. 1, 3 видно, что использование полиномиальных представлений совершенно непригодно для описания комбинаций торсионных энергий $a_0^{(-)}(K)$ или квартичных спостоянных $a_2(K)$. Более того, анализ показывает, что увеличение количества подгонизведения экспериментальных данных (такая точность достигается, когда число варьируемых параметров приближается к числу экспериментальных данных). Подгонка с новыми моделями представляется достаточно хорошей.

Стариков В.И.

Модель	L	$a_1^{\max} \cdot 10^6 \mathrm{cm}^{-1}$	K
		$a_1(n=0, \tau =$	1)
<i>P</i> (3)	3	10,7	
$a_2 K^2 + a_4 K^4$		7.0	$K \leq 14$
$a_0^{+} + \frac{1}{1 + z_2 K^2 + z_4 K^4}$	4	7,9	$K \neq 8, K \neq 9$
$a K^{2} + a K^{4}$			K ≠ 13
$a_0 + \frac{a_2 R + a_4 R}{1 + z_1 \sin(\alpha K)}$	3	5,8	
	$a_1(n=0, \tau=2)$		
<i>P</i> (4)	4	12	
$a_2 K^2 + a_4 K^4$			$K \le 14$
$a_0 + \frac{1}{1 + z_1 K + z_2 K^2}$	4	11,5	$K \neq 1, K \neq 7$
$a_2 K^2 + a_4 K^4$		10	
$a_0^+ + \frac{1}{1+z_1} \sin(\alpha K - \theta_0)$	3	12	
		$a_1(n=0, \tau=$	3)
P(4)	4	42,1	
$a_1 K + a_2 K^2$		o -	$K \le 14$
$a_0^{+} + \frac{1}{1 + z_1 K^2 + z_2 K^4}$	4	8,7	$K \neq 1$
$x^{2} + a K^{4}$			K ≠ 13
$a_0 + \frac{a_2 K + a_4 K}{1 + z_1 \sin(\alpha K + \theta_0)}$	4	10,9	

Качество подгонки параметров $a_1(K)$ (из [8]) для основного состояния молекулы метанола CH₃OH

Примечание: $\alpha = 0,3970871$ и $\theta_0 = 2\pi/3$.

Таблица З

Качество подгонки параметров a2(K) (из [8]) для основного состояния молекулы метанола CH3OH

Модель	L	$a_2^{\max} \cdot 10^8 \mathrm{cm}^{-1}$	K
	$a_2(n=0, \tau=1)$		
$a_0 + \frac{a_1K + a_2K^2 + a_4K^4 + a_6K^6}{1 + z_1K - K^2}$	5	8,3	$K \le 14$ $K \ne 1, \ K \ne 9$
	$a_2(n=0, \tau=2)$		
$a_0 + \frac{a_1K + a_2K^2 + a_4K^4 + a_6K^6}{1-K^2}$	4	11	$K \le 14$ $K \ne 1$
		$a_2(n=0, \tau =$	3)
$a_0 + \frac{a_1K + a_2K^2 + a_4K^4}{1 + z_1K - K^2}$	4	5,9	$K \le 14$ $K \ne 1$
<i>P</i> (5)	5	1104,8	

В табл. 4 показано качество предсказания торсионных энергий $a_0(K)$ для основного состояния молекулы. На первом этапе подгонки экспериментальные данные были обработаны с помощью полученных соотношений для $a_0(K)$ до $K \le 10$, на втором этапе полученные значения для варьируемых параметров были использованы для расчета $a_0(K)$ для варьируемых параметров были использованы для расчета $a_0(K)$ для $10 < K \le 14$ и результаты сравнивались с экспериментальными значениями для этих постоянных. И, наконец, в табл. 5 представлены вычисленные значения параметров $a_m(K)$ (m = 0, 1, 2) при K = 15, которые могут быть использованы для поиска новых линий поглощения в молекуле.

В заключение выражаю благодарность проф. М. Винневиссеру, который предложил мне указанную тему для исследования, С.Н. Михайленко – за помощь, оказанную в работе, Б. Винневиссер и В.П. Качанову – за обсуждение различных аспектов этой работы.

Аппроксимационные формулы для спектроскопических параметров

Качество предсказания параметров a ₀ (K) для основного состояния молекул метанола CH ₃ OH, полученны	x c
использованием варьируемых параметров, найденных из подгонки до К ≤10	

	$a_0(\tau = 1)$	$a_0^{(+)}$	$a_0^{(-)}$
L	5	6	5
$\Delta a_0^{\max} \cdot 10^4 \mathrm{cm}^{-1}, K \le 10$	8	3,7	7,1
и экспер. [8]	552,33	549,50	- 9,72
к = 11 предск.	552,33	549,50	- 9,73
_{<i>K</i>-12} экспер. [8]	628,92	629,74	-10,54
K = 12 предск.	628,96	629,75	-10,57
у экспер. [8]	712,55	716,69	- 9,49
K = 13 предск.	712,70	716,67	- 9,75
у экспер. [8]	803,49	810,19	- 7,21
K = 14 предск.	803,83	809,93	- 7,28

В предсказании использовались следующие модели:

 $\begin{aligned} a_0(\tau = 1) &= a_0 + \sum_{i=1}^3 a_i K^{2i} / (1 + z_1 K + z_4 K^4); \\ a_0^{(+)} &= a_0 + \sum_{i=1}^3 a_i K^{2i} / (1 + \sum_{i=1}^3 z_i K^{2i}); \\ a_0^{(-)} &= [a_1 \sin(\alpha K) + a_2 \sin(2\alpha K) + a_4 \sin(4\alpha K)] / (1 + z_2 K^2). \end{aligned}$

Таблица 5

Вычисленные значения параметров *a*_m(*K*) для основного состояния молекулы метанола CH₃OH для *K* = 15

Параметры	$\tau = 1$	$\tau = 2$	$\tau = 3$
<i>a</i> ₀ , см ⁻¹ ,	901,95	908,5	912,00
$a_1, cm^{-1},$	0,804962	0,80480	0,80468
<i>a</i> ₂ , 10 ⁻⁶ см ⁻¹ ,	- 2,6	- 1,75	- 1,6

Работа поддержана Российским фондом фундаментальных исследований (проект N 93–02–3410), а также Международным научным фондом, грант N 3000.

1. Орвил-Томас В.Д. //Внутреннее вращение в молекулах. М.: Мир, 1977. 510 с.

2. Koehler J.S. and Dennison D.M. //Phys. Rev. 1940. N 57. P. 1006–1021.

3. Hecht K.T. and Dennison D.M. //J. Chem. Phys. 1957. N 26. P. 48–69.

4. Lees R.M. and Baker J.G. //J. Chem. Phys. 1968. N 48. P. 5299–5318.

5. K wan Y.Y. and Dennison D.M. //J. Mol. Spectr. 1972. N 43. P. 291-319.

6. H e n n i n g s e n J.O. //J. Mol. Spectrosc. 1981. N 85. P. 285–300.

7. Pickett H.M., Cohen E.A., Brinza D.E., Schaefer M.M. //J. Mol. Spectrosc. 1981. N 89. P. 542–547.

8. Moruzzi G., Riminucci P., Strumia F., et al. //J. Mol. Spectrosc. 1990. N 144. P. 139–200.

9. Абрамовиц М., Стиган И.А.//Справочник по специальным функциям. М.: Наука, 1979. 831 с

10. Рид М., Саймон Б. //Методы математической физики. IV. Анализ операторов. М.: Мир, 1982. 428 с.

11. Herschbach D.R. //J. Chem. Phys. 1959. N 31. P. 91–108.

12. Давыдов А.С. //Квантовая механика. М. 1963. 748 с.

13. Давыдов А.С. //Теория твердого тела. М.:Наука, 1976. 640 с.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 12 октября 1994 г.

$V\,.\,I\,.\,Starikov\,.$ Approximative Formulae for Spectroscopic Parameters of Weakly Asymmetric Molecules with Internal Rotation.

The expressions are obtained for spectroscopic parameters $a_m(K)$ of weakly asymmetric molecules with internal rotation. These parameters determine magnitude of rotational energy of a molecule. The expressions depend on solution of Schrödinger equation which takes into account the periodicity of potential function and strong interaction between internal and over-all rotations. It is proposed to seek the solution for eigenvalues of the Schrödinger equation as ratio of Fourier series with respect to rotational quantum number K. The expressions for $a_m(K)$ were applied to molecula CH₃OH having rotation axis of the third order.