УДК 551.591:627.922

Г.А. Калошин, В.С. Козлов, В.П. Шмаргунов

ЛОКАЦИОННЫЙ ИЗМЕРИТЕЛЬ МЕТЕОРОЛОГИЧЕСКОЙ ДАЛЬНОСТИ ВИДИМОСТИ В СОСТАВЕ ЛАЗЕРНОГО МАЯКА Ч. II. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Приведены результаты синхронных измерений прозрачности модельной среды типа дымового аэрозоля базисным и разработанным локационным измерителями метеорологической дальности видимости, которые совпадают с относительной погрешностью около 20%. Обсуждаются методические вопросы калибровки и погрешности измерения прозрачности локационным измерителем.

В предыдущей статье [1] на основе расчетных данных показана возможность реализации в составе однопозиционной конструкции лазерного маяка локационного измерителя метеорологической дальности видимости, использующего в качестве источника световые пучки маяка. Вместе с тем практическое воплощение локационной методики требует знания калибровочных параметров и оценки погрешности измерения дальности видимости.

В данной статье приведены результаты оценок точностных характеристик и результаты калибровки локационного измерителя видимости, полученные нами в контролируемых модельных условиях при экспериментальных исследованиях макета локационного измерителя метеорологической дальности видимости ($S_{\rm M}$) в сопоставлении с данными измерений прозрачности модельной аэрозольной среды базисным методом [2]*.

Для проведения экспериментальных исследований был изготовлен макет автономного прибора, обеспечивающего измерения обратного рассеяния в области локационных углов с оптико-геометрическими параметрами, близкими к использованным в расчетах [1], и с возможностью изменения угла схождения оптических осей источника и приемника излучения. Для сравнительных измерений использован базисный измеритель прозрачности, обеспечивающий на трассе длиной до 50 м с достаточной точностью измерения метеорологической дальности видимости $S_{\rm M}$ в интервале значений 70–1000 м. Оба прибора были размещены в большой аэрозольной камере (БАК) емкостью 1800 м³ (длина 26 м). Оптические измерения $S_{\rm M}$ в дымах различной плотности, создаваемых внутри камеры, проводились в синхронном режиме. Результаты одновременных измерений позволили оценить возможные погрешности локационного измерителя $S_{\rm M}$ и выполнить калибровку макета.

Локационный измеритель S_м

Функциональная схема локационного измерителя видимости представлена на рис. 1. Прибор осуществляет измерения по компенсационной схеме, согласно которой в устройстве формируются два световых сигнала: один – основной, пропорциональный рассеянному аэрозолем световому потоку, а второй – опорный, пропорциональный мощности источника излучения. Сигналы сравниваются по разности величины. За счет линейного смещения в опорном канале регулировочного элемента (оптического клиновидного ослабителя) достигается условие равенства основного и опорного сигналов. В итоге требуемая для компенсации величина коэффициента ослабления оптического клина, пропорциональная его линейному смещению, является количественной характеристикой значения метеорологической дальности видимости *S*.

^{*} Отметим, что здесь и далее под термином метеорологическая дальность видимости понимается величина $S_{\rm M}$ =3,9/ε(0,5), где ε(0,5) – коэффициент ослабления на длине волны 0,5 мкм. При обработке экспериментальных данных, когда измерение прозрачности проводилось на λ =0,63 мкм, осуществлялся соответствующий пересчет значений ε(0,63) на ε(0,55).

Рис. 1 Функциональная схема локационного измерителя видимости: *ЭС* – электронная система, *CB* – синхронный выключатель, *PC* – реверсивный счетчик

Действительно, рассеянный в направлении назад сигнал в приближении однократного рассеяния может быть представлен в виде

$$U_{\rm p}(\pi) = k_1 P_0 / S_{\rm M} \,, \tag{1}$$

где P_0 – мощность излучения источника; k_1 – оптико-геометрический параметр. Отметим, что в уравнении (1): а) не учитывается ослабление излучения на трассе измерений, поскольку для рассматриваемого макета прибора, работающего в ближней зоне, расстояние от источника до дальней границы рассеивающего объема невелико и составляет около 10 м; б) величина локационного отношения (нормированной индикатрисы рассеяния назад) входит в оптико-геометрический параметр k_1 ; в) использована приведенная выше связь аэрозольного коэффициента ослабления с метеорологической дальностью видимости.

В свою очередь, величина опорного сигнала

$$U_{\rm out} = k_2 P_0 \exp\left[-\tau_{\rm x}(x)\right], \tag{2}$$

где k_2 – соответствующая аппаратурная постоянная; $\tau_{k}(x)$ – оптическая толща клина в линейной позиции *x*.

Из условия компенсации потоков $U_{\rm p} = U_{\rm on}$ несложно получить

$$\tau_{k}(x) = \ln S_{k}(x) - \ln k , \qquad (3)$$

где $k = k_1/k_2$.

Таким образом, для клина с линейным по его длине изменением оптической толщи шкалу перемещения можно прокалибровать в единицах $\ln S_{y}$.

Конструктивно макет прибора выполнен как автономный, в едином влагозащитном корпусе, где размещаются источник оптического излучения, приемник локационного сигнала, блок обработки и индикации, блок электропитания.

Прибор работает следующим образом (см. рис. 1). Лампа накаливания \mathcal{N} излучает белый световой поток, который периодически прерывается механическим модулятором M с частотой 5 Гц и в противофазе подается по двум направлениям. Первое – через сферическое зеркало 3_1 с фокусным расстоянием F = 0,25 м в аэрозольную рассеивающую среду, второе (опорный канал) – через регулируемый элемент (клиновидный ослабитель K) по световоду поступает на фотоприемник Φ . Рассеянный аэрозолем сигнал через приемное сферическое зеркало 3_2 с фокусным расстоянием F = 0,25 м также поступает на фотоприемник Φ , где суммируется в противофазе с опорным сигналом, и далее осуществляется синхронное детектирование в режиме счета фотонов. При достижении определенной разности сигналов исполнительная система MC

Калошин Г.А., Козлов В.С., Шмаргунов В.П.

1604

включает электродвигатель \mathcal{A} , который приводит в движение оптический клиновидный ослабитель K; при этом оптический клин линейно перемещается, смещая указатель по шкале значений $S_{_{M}}$. С двигателем также механически связан электрический датчик положения клина Π – реохорд, который вырабатывает аналоговый выходной сигнал, соответствующий определенному положению клина, т.е. определенной величине рассеянного аэрозолем света. Аналоговый сигнал регистрировался самопишущим прибором типа КСП.

Оптико-геометрические параметры локационного измерителя составляли апертуры источника и приемника $d_{\mu} = d_{\pi} = 0,16$ м, углы расходимости излучения источника и поля зрения приемника $2\gamma_{\mu} = 2\gamma_{\pi} = 0,9^{\circ}$, межосевое расстояние B = 0,25 м, угол схождения оптических осей источника и приемника $\varphi = 1,4-2,9^{\circ}$. При этом параметры рассеивающего объема для $\varphi = 1,4^{\circ}$ составляли: $V_{p} = 0,1$ м³; $L_{1} = 1,8$ м, $L_{2} = 9$ м, где L_{1} и L_{2} – удаление ближней и дальней границ рассеивающего объема соответственно.

Базисный измеритель S_м

Базисный измеритель $S_{\rm M}$ конструктивно состоит из источника излучения, системы установленных в аэрозольной камере зеркал, позволяющей изменять длину трассы в аэрозоле от 5 до 50 м, приемника ослабленного излучения и регистрирующей аппаратуры. Изменение длины трассы дает возможность выполнять измерения при аэрозольных оптических толщах, обеспечивающих низкие погрешности измерений. В качестве источника используется гелийнеоновый лазер на длине волны 0,63 мкм мощностью 20 мВт, излучение которого поступает в аэрозольную среду, ослабляется на трассе длиной *L* и регистрируется фотометром. Коллиматор фотометра, состоящий из объектива и установленной в его фокальной плоскости диафрагмы, задает угол поля зрения фотометра $2\gamma_{\rm n} = 5 \div 10'$. Входящая в состав фотометра система дискретных нейтральных светофильтров позволяет ослабить регистрируемый световой поток до 10^6 раз. В качестве фотоприемника использован фотодиод ФД-24К. Электрический сигнал с фотодиода выделяется на цифровой индикатор измерителя. В измерителе $S_{\rm M}$ предусмотрен непрерывный контроль стабильности излучения ОКГ.

Для оперативной обработки данных и управления работой прибор через интерфейс подключен к ЭВМ типа «Электроника-60», которая обрабатывает информацию, заносит ее в банк данных и выводит результаты измерений на внешнее устройство.

Вычисление S_{M} осуществляется на основе измерений аэрозольного коэффициента ослабления є по методу Бугера [2, 3] и последующего его пересчета на S_{M} :

$$S_{_{\rm M}} = 3.9 / \epsilon = 3.9 L / \tau$$
, (4)

где $\tau = \varepsilon L = \ln (I_0 / I)$ – измеряемая оптическая толща аэрозольной среды; I_0 и I – интенсивности излучения на входе и выходе из аэрозольной среды соответственно.

Анализ погрешностей измерения S_м базисным и локационным измерителями

Погрешности измерения S_м базисным измерителем можно разделить на две группы:

методические, обусловленные физическими условиями применимости уравнения Бугера;
аппаратурные (случайные и систематические) погрешности.

Проанализируем влияние каждой из групп погрешностей на точность измерений $S_{_{\rm M}}$ базисным методом. Известно, что значительный вклад в отклонение от закона Бугера может внести многократное рассеяние света. Величина доли рассеянного света, попадающего в приемник, зависит от τ , $2\gamma_{_{\rm H}}$, $d_{_{\rm H}}$. Известно также [3], что при $2\gamma_{_{\rm H}} = 2\gamma_{_{\rm I}} = 10''-30'$ эффектами многократного рассеяния при учете рассеянного вперед излучения можно пренебречь до значений оптической толщи $\tau < 18$ для атмосферных аэрозолей различных типов. Следовательно, в нашем случае, при $2\gamma_{_{\rm H}} = 2\gamma_{_{\rm I}} = 10'$ вкладом многократного рассеяния можно пренебречь при значениях коэффициента ослабления $\varepsilon < 0,36$ м⁻¹ (при L = 50 м), соответствующих значениям $S_{_{\rm H}} > 10$ м, т.е. практически во всем основном диапазоне $S_{_{\rm H}}$ в условиях измерений.

Локационный измеритель метеорологической дальности видимости

Выражение для среднеквадратической случайной относительной погрешности измерений коэффициента ослабления, или S₄, базисным методом имеет следующий вид [2]:

$$\delta = dS_{_{\rm M}} / S_{_{\rm M}} = (\sqrt{1 + \exp(2\tau)}/\tau) \, dI_{_0} / I_{_0} \,. \tag{5}$$

Средняя относительная погрешность нестабильности входного сигнала dI_0/I_0 сводилась при измерениях к минимуму за счет непрерывного контроля стабильности излучения источника и чувствительности аппаратуры. Эта погрешность оценивалась экспериментально и в среднем составляла 3%.

На рис. 2 приведена рассчитанная из (5) зависимость относительной погрешности δ от отношения I_0/I , значения которого соответствуют области $\tau < 1$. Отметим, что при измерениях ε с целью уменьшения погрешности задавалась (с помощью системы зеркал) длина трассы, соответствующая значениям $\tau < 1$. На рис. 2 в качестве примера дополнительно приведена шкала значений $S_{\rm M}$ для L = 50 м. Как видно, измерения на такой трассе позволяют определять метеорологическую дальность видимости с погрешностью не более 25% для значений $S_{\rm M} < 1000$ м. При этом с уменьшением $S_{\rm M}$ до 200 м ($\tau < 1$) погрешность снижается и составляет менее 9%.

Рис. 2 Относительная среднеквадратическая погрешность измерения $S_{\rm M}$ базисным измерителем. Шкала $S_{\rm M}$ дана для $L=50~{\rm M}$

Таким образом, базисный измеритель S_м можно использовать для калибровки и оценки погрешности локационного датчика видимости.

Погрешности измерения S_м локационным измерителем могут быть трех типов: аппаратурные, погрешности процедуры абсолютной калибровки измерений и методические.

Для оценки аппаратурной погрешности, вызванной нестабильностью работы аппаратуры за длительный временной период, были проведены специальные измерения, которые показали, что средняя относительная погрешность составляет 2÷4%. Это достигается использованием в макете компенсационной схемы сравнения регистрируемого сигнала.

Относительная погрешность калибровки прибора фактически определяется погрешностью использования базисного измерителя $S_{\rm M}$ и оценена выше на уровне 20%. Основными факторами, которые могут приводить к методическим погрешностям, являются возможный вклад многократного рассеянного света в величины регистрируемых оптических сигналов и пространственно-временные вариации оптических характеристик аэрозоля. В целом методическая погрешность локационного измерителя $S_{\rm M}$ может быть оценена на основе сопоставления результатов измерений с синхронными данными о прозрачности аэрозольной среды, полученными базисным измерителем $S_{\rm M}$. Поскольку подобная процедура сопоставления одновременно позволяет прокалибровать в абсолютных единицах $S_{\rm M}$ шкалу (показания) локационного измерителя, то оценка методической погрешности приведена ниже одновременно с калибровкой.

Калибровка локационного измерителя S_м осуществлялась на основании результатов одновременных измерений прозрачности двумя измерителями в постепенно изменяющейся по 1606 Калошин Г.А., Козлов В.С., Шмаргунов В.П. плотности аэрозольной среде типа дымов, которые создавались посредством сжигания в электропечи определенного количества древесины. Изменением количества сжигаемой древесины достигалось изменение начальной плотности задымления воздуха в БАКе. Измерительные циклы начинались через $1\div1,5$ ч. после окончания сжигания древесины, когда дым равномерно заполнит весь объем камеры, и могли продолжаться при изменяющейся $S_{\rm M}$ сутки и более. Выбор такой модельной среды был обусловлен тем, что оптические свойства дымового аэрозоля, возникающего при термическом разложении древесины, близки к оптическим свойствам атмосферной дымки, являющейся, как известно, наиболее характерным типом атмосфернооптических замутнений.

Из (3) следует, что для локационного измерителя можно определить наклон рабочей характеристики по двум $S_{\rm M}$, измеренным базисным измерителем. Действительно, зная величины эхосигнала U_1 и U_2 , соответствующие двум значениям $S_{\rm M1}$ и $S_{\rm M2}$, полученным базисным измерителем, можно согласно (3) записать

$$\Delta \ln S_{\rm M} / \Delta \tau = \ln \left(S_{\rm M2} / S_{\rm M1} \right) / \ln \left(U_1 / U_2 \right), \tag{6}$$

где $\Delta \tau$ – соответствующее изменение оптической плотности ослабителя. Отметим, что предварительное фотометрирование клина *K* (см. рис.1) по длине показало его линейность с относительной погрешностью 3%, т.е. равным перемещениям клина Δx соответствуют равные $\Delta \tau$.

В качестве калибровочных могут быть выбраны два любых значения $S_{_{\rm M}}$. Нами, исходя из условий эксперимента, были выбраны средние по десяти отсчетам значения $S_{_{\rm M1}} = 0,25$ км и $S_{_{\rm M2}} = 1,0$ км, которые измерялись базисным измерителем на базе L = 50 м. Выбранным значениям $S_{_{\rm M2}}$ соответствовали средние значения эхосигнала $U_1 = 16$ мВ и $U_2 = 3,5$ мВ. Подставляя выбранные $S_{_{\rm M}}$ и соответствующие им U в (6), получим

$$\Delta \ln S_{\rm M} / \Delta \tau \simeq 1 \ . \tag{7}$$

Такая оценка наклона калибровочной характеристики однозначно свидетельствует о применимости приближения однократного рассеяния, лежащего в основе разработанного макета локационного измерителя с выбранными оптико-геометрическими параметрами в рассмотренном диапазоне $S_{\rm M}$. Следовательно, методическую погрешность, обусловленную кратным рассеянием, можно не учитывать для данного локационного измерителя.

Таким образом, относительная среднеквадратическая погрешность измерения $S_{_{\rm M}}$ для локационного измерителя составляет около 20%. Отметим попутно, что более детальный анализ погрешностей целесообразен для законченного прибора на этапе метрологической аттестации. В нашем случае оценен порядок величины относительной погрешности измерения $S_{_{\rm M}}$ при сопоставлении с базисным методом.

Из (6) и (7) следует, что

$$\ln S_{M2} = \ln S_{M1} + \ln \left(U_1 / U_2 \right). \tag{8}$$

Уравнение (8) позволяет рассчитать в данном диапазоне S_{M} зависимость $\ln S_{M}(U)$, имея лишь одну калибровочную точку (S_{M1}, U_{1}) .

Из (7) следует, что линейная шкала клина $\tau = f(x)$ является линейной и для ln $S_{\rm M}$. Подставляя в (8) предельные значения U, которые составляли $U_{\rm max} = 82$ мВ и $U_{\rm min} = 0.24$ мВ, и калибровочную точку ($U_1 = 3.5$ мВ и $S_{\rm ml} = 1$ км), получаем $S_{\rm min} = 0.042$ км и $S_{\rm max} = 14.6$ км.

На рис. 3 для одной из реализаций показаны результаты сравнения одновременных измерений $S_{_{\rm M}}$ локационным и базисным измерителями. Из рис. 3 следует, что данные локационного измерителя $S_{_{\rm M}}$ с относительной среднеквадратической погрешностью около 20% соответствуют данным базисных измерений. Рис. 3 иллюстрирует слабое влияние многократного рассеяния в рассмотренном диапазоне $S_{_{\rm M}}$. Это обстоятельство позволяет распространить предложенную методику калибровки по одной калибровочной точке (U, $\ln S_{_{\rm M}}$) до $S_{_{\rm M}} = 14,6$ км с учетом, что $\Delta \tau / \Delta x \simeq$ const.

Рис. З Результаты одновременных измерений S_м локационным (ось ординат) и базисным (ось абцисс) измерителями

Заключение

Показана возможность реализации в составе однопозиционной конструкции лазерного маяка локационного измерителя дальности видимости с выбранной оптико-геометрической схемой с суммарной относительной погрешностью измерения *S*_м около 20%.

- 1. Калошин Г.А., Козлов В.С., Панченко М.В., Полькин В.В. Оптика атмосферы и океана. 1994. Т. 7. №10. С. 1441–1447.
- 2. Ковалев В.А. Видимость в атмосфере и ее определение. Л.: Гидрометеоиздат, 1988. 216 с.
- 3. Зуев В.Е., Кабанов М.В. Перенос оптических сигналов в атмосфере (в условиях помех). М.: Сов. радио, 1977. 368 с.

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 23 февраля 1994 г.

G.A. Kaloshin, V.S. Kozlov, V.P. Shmargunov. Location Meter as a Part of Laser Beacon for Measuring Meteorological Visibility Range.

The results of simultaneous measuring of transparency of a model media of fume type by standard meter and a developed location meter of meteorological visibility range are presented in the paper. The relative error of their coinciding is about 20%. The problems of calibration and errors at measuring the transparency by the location meter are also treated.