СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

Н.Н. Лаврентьева, В.Н. Савельев

ОСОБЕННОСТИ РАСЧЕТА УШИРЕНИЯ ЛИНИЙ ТЕТРАЭДРИЧЕСКИХ МОЛЕКУЛ. ВРАЩАТЕЛЬНЫЕ ПЕРЕХОДЫ ТИПА *А* И *Е*

Показано, что использование симметризованных волновых функций тетраэдрических молекул позволяет получить расчетные формулы для коэффициентов уширения спектральных линий при переходах с уровней симметрии A_1, A_2, E . В схеме Андерсона–Цао–Карнатта выведены формулы для функции обрыва излучения, учитывающие октуполь-октупольное, октуполь-квадрупольное и дисперсионное взаимодействия. Для переходов типа A и E проведен расчет коэффициентов уширения спектральных линий полосы v_4 метана для случая уширения азотом и воздухом. Сравнение экспериментальных и расчетных данных показывает хорошее качественное их соответствие.

Введение

Достижения лазерной и Фурье-спектроскопии предъявляют повышенные требования к точности расчетов параметров спектральных линий. В частности, это относится к расчету полуширин и сдвигов линий молекул тетраэдрической симметрии, типичным представителем которых является молекула метана. Необходимость точного расчета уширения и сдвига линий такого типа молекул объясняется еще и тем, что особенности тетраэдрического расщепления спектра часто не позволяют провести непосредственные экспериментальные измерения указанных параметров линий.

Теория уширения спектральных линий Андерсона–Цао–Карнатта [6], уже доказала свою применимость при рассмотрении различных газов. С ее помощью удается рассчитывать самоуширение и уширение посторонними газами линейных молекул и молекул типа симметричного и асимметрического волчков. В работах Тейвани и Варанази [1], Ямамото и Хироно [2, 3] и других эта теория была распространена на молекулы, имеющие первый ненулевой октупольный момент в основном состоянии. Сюда можно отнести такие высокосимметричные молекулы, как CH_4 , SiF_4 , GeH_4 , SF_6 и т.д.

В схеме Андерсона–Цао–Карнатта основной вклад в уширение описывается функцией прерывания излучения $S_2(b)$. Расчетные формулы для $S_2(b)$, включающие октупольные взаимодействия, приведены в [1–5, 7]. Недостатком расчетных формул, полученных в [1–3], является то, что они были выведены из предположения об аксиальной симметрии зарядового распределения в молекуле метана и с использованием волновых функций симметричного волчка. Последнее приводит к тому, что не выполняются <точные> правила отбора октупольных переходов. Игнорирование тетраэдрического характера расщепления в спектре метана приводит к тому, что не выполняются superingent правила отбора октупольных переходов. Игнорирование тетраэдрического характера расщепления в спектре метана приводит к тому, что расчетные значения коэффициентов уширения линий, относящихся к переходам с вращательных уровней различной симметрии, оказываются одинаковыми [1–7]. Это совершенно не согласуется с данными эксперимента [8, 9]. Например, в [1, 7] различие в расчетных значениях коэффициентов уширения вращательных переходов типа A, E, F проявляется только для $J \leq 8$ и то лишь вследствие того, что при малых J в волновых функциях присутствуют не все необходимые типы вращательной симметрии: т.е. при $J \leq 8$ сильно различается количество возможных безызлучательных переходов (с учетом правил отбора для октупольных переходов).

Наиболее полно учесть симметрию молекулы и характер тетраэдрического расщепления спектра удалось Варанази [4], который учел сферический характер зарядового распределения в метане и для получения $S_2(b)$ использовал симметризованные вращательные волновые функ-

Особенности расчета уширения линий

УДК 539.194

ции, преобразующиеся по представлениям группы симметрии молекулы. При этом были приняты во внимание наличие ненулевого гексадекапольного момента в молекуле и дисперсионные взаимодействия между сталкивающимися частицами. Отметим, что для уширения и сдвига линий метана, который не имеет заметных дипольного и квадрупольного моментов в основном колебательном состоянии, дисперсионные и индукционные взаимодействия могут играть существенную роль. Результат, полученный в [4, 5], позволяет рассчитывать уширение колебательно-вращательных переходов типа $F_1 \leftrightarrow F_2$, но он неприменим для переходов типа $A_1 \leftrightarrow A_2$ и $E \leftrightarrow E$. Такое ограничение связано с тем, что только для *z*-компонент трехмерных неприводимых представлений F_1 и F_2 группы T_{a^p} к которой принадлежит молекула CH₄, волновые функции имеют компактный вид. Поэтому только для переходов типа $F_1 \leftrightarrow F_2$ можно получить достаточно простые выражения функции $S_2(b)$.

В настоящей статье представлены формулы, позволяющие рассчитывать коэффициенты уширения молекул симметрии T_d при переходах с колебательно-вращательных уровней для любого типа симметрии A_1, A_2, E, F_1 или F_2 . Отметим, что выражения для межмолекулярного потенциала взаимодействия, октупольного и гексадекапольного моментов в тензорной форме были взяты из [4]. Правила отбора для *J* при октупольных переходах: $\Delta J = 0, \pm 1, \pm 2, \pm 3$, а не $\Delta J = \pm 1, \pm 3$, как отмечено в [1, 2, 7] по модели аксиального зарядового распределения. Правила отбора на другие квантовые числа при октупольных переходах сохраняются те же, т.е. $A_1 \leftrightarrow A_2, E \leftrightarrow E, F_1 \leftrightarrow F_2$ и этом $\Delta n = 0$.

1. Волновые функции

Как уже упоминалось, по формулам [4] можно рассчитывать уширение только переходов типа $F_1 \leftrightarrow F_2$. Это связано с тем, что автором были использованы вращательные волновые функции, выведенные Озье и Фоксом [10]. Эти функции преобразуются непосредственно по неприводимым представлениям группы T_d . Но непосредственно ортогональные функции удалось получить только для уровней симметрии F_1 и F_2 . Волновые функции, преобразующиеся по неприводимым представлениям A_1, A_2, E , нуждались в дальнейшей численной ортогонализации.

В своей работе мы использовали волновые функции, полученные независимо Итано [11] и Чеглоковым, Улениковым [12]. Вследствие некоторой громоздкости сами функции здесь не приводятся. Для дальнейших расчетов вращательные волновые функции $|JKIM\rangle$ удобно записать в более единообразной и компактной форме. Как обычно, здесь J, K – вращательные квантовые числа; M – магнитное квантовое число; Γ – число, отмечающее симметрию уровней. После несложных преобразований с учетом того, что при четных M и M

$$d_{MM}^{J}(\frac{\pi}{2}) = (-1)^{J} d_{MM}^{J}(\frac{\pi}{2}),$$

можно в компактной форме записать функции, преобразующиеся по представлениям $\Gamma = A_1$, A_2 , E, F_1 , F_2 группы T_{d^*}

$$\left| JKTM > = A_{K}^{JC} \sum_{\tilde{K}} B_{K\tilde{K}}^{J\Gamma} \left(\left| J\tilde{K}M > + \tau^{C} (-1)^{J} \right| J - \tilde{K}M > \right).$$

$$\tag{1}$$

Здесь | *JKM*> – известные функции симметричного волчка:

$$\left| JKM \right\rangle = \left(\frac{2 J+1}{8\pi^2}\right) D_{MK}^J (\alpha \beta \gamma)^*, \tag{2}$$

где α , β , γ – углы Эйлера. Значения коэффициентов $A_{K}^{J\Gamma}$, $B_{KK}^{J\Gamma}$, τ^{Γ} для различных симметрий Γ даны в табл. 1. Необходимые коэффициенты приведены для обеих составляющих дважды 30 Лаврентьева Н.Н., Савельев В.Н.

вырожденного состояния E (вследствие того, что присходят только переходы типа $E_1 \leftrightarrow E_2$) и только для составляющих z трижды вырожденных состояний F_1 и F_2 (для расчета уширения и сдвига достаточно рассматривать переходы между компонентами $F_1^z \leftrightarrow F_2^z$).

Г	K	\widetilde{K}	$A_K^{J\mathrm{C}}$	$B_{K\widetilde{K}}^{JC}$	г т
A_1	0, 4, 8	0, 4, 8	1/√6	$4 d_{K\widetilde{K}}^{J} + \delta_{K\widetilde{K}}$	1
A_2	2, 6, 10	2, 6, 10	1/√6	$4 d_{K\widetilde{K}}^J - \delta_{K\widetilde{K}}$	1
E_1	0, 4, 8	0, 4, 8	$1/2\sqrt{6}$	$4 d^J_{K \widetilde{K}} - 2 \delta_{K \widetilde{K}}$	1
E_2	0, 4, 8	2, 6, 10	-2	$d^{J}_{K\widetilde{K}}$	1
F_1^z	0, 4, 8	0, 4, 8	$\frac{1 - (-1)^{3} \delta_{K0}}{\sqrt{2} (1 + \delta_{K0})^{3/2}}$	$\delta_{K\widetilde{K}}$	-1
F_2^z	2, 6, 10	2, 6, 10	$1/\sqrt{2}$	$\delta_{K\widetilde{K}}$	-1

Таблица 1

В дальнейшем для краткости $d_{K\tilde{K}}^{J} \equiv d_{K\tilde{K}}^{J}(\frac{\pi}{2})$ – составляющие *D*–функции Вигнера. В формуле (1) индексы *K* принимают только положительные значения с шагом, равным 4. Суммирование по \tilde{K} идет до *J* включительно, а количество функций с разными значениями *K* должно быть равно числу подуровней симметрии Γ в уровне с данным *J* [10–12].

Как отмечено в [10–12], вращательные функции вида (1) для симметрии A_1, A_2, E не ортогональны. Численная ортогонализация не дает возможности получить формулы для функции прерывания излучения $S_2(b)$. В [12] показано, что возможно провести ортогонализацию этих функций в аналитическом виде. Ортогонализация функций производится по формуле

$$\left| JK\Gamma M \right\rangle_{\text{ort}} = \sum_{\widetilde{K}=L}^{K} \alpha^{J\Gamma}_{K\widetilde{K}} \left| J\widetilde{K}\Gamma M \right\rangle,$$
(3)

где коэффициенты α_{KK}^{T} представляют собой следующие выражения:

$$\alpha^{J\Gamma}_{K\widetilde{K}} = \left\{ 1 + \delta_{K0} (-1)^{J+} (4 (-1)^{J} - 6 \delta_{\Gamma E}) d^{J}_{KK} - \sum_{l=L}^{K-4} \sum_{\substack{i \neq l \\ j \neq l}} \alpha^{J\Gamma}_{li} \alpha^{JC}_{lj} \left[\delta_{Ki} + (4 (-1)^{\Gamma} - 6 \delta_{\Gamma E}) d^{J}_{Ki} \right] \times \left[\delta_{Kj} + (4 (-1)^{\Gamma} - 6 \delta_{\Gamma E}) d^{J}_{Kj} \right] \right\}^{-1/2};$$
(4)

$$\alpha_{Kl}^{\mathcal{T}} = -\alpha_{KK}^{\mathcal{T}} \sum_{i \ge l}^{K-4} \sum_{i=L}^{i} \alpha_{ij}^{\mathcal{T}} \alpha_{il}^{\mathcal{T}} \left[\delta_{Kj} + (4 \ (-1)^{\Gamma} - 6 \ \delta_{\Gamma E}) \ d_{Kj}^{\mathcal{I}} \right].$$

$$(5)$$

Выражение $(-1)^{\Gamma}$ в (4), (5) равно $(-1)_{2}^{A} = -1$; $(-1)_{1}^{A} = (-1)^{E} = 1$; L равно начальному значению K из табл. 2.

Подставляя (1) в (3), получим окончательное компактное выражение уже для ортогональных функций, преобразующихся по представлениям A_1, A_2, E . В табл. 2 даны возможные значения индексов K, \tilde{K}, K^* в формуле (6):

$$\left| JKTM \right\rangle = \sum_{\widetilde{K}=L}^{K} \alpha_{K\widetilde{K}}^{\mathcal{T}} \mathbf{A}_{\widetilde{K}}^{\mathcal{T}} \sum_{k^{*}}^{J} \mathbf{B}_{\widetilde{K}k^{*}}^{\mathcal{T}} \left(\left| JK^{*}M \right\rangle + \tau^{\Gamma} (-1)^{J} \left| J - K^{*}M \right\rangle \right).$$

$$(6)$$

Особенности расчета уширения линий

Таблица 2

Г	A_1	A_2	E	F_1	F_2
K, \widetilde{K}	0, 4, 8	2, 6, 10	0, 4, 8, 12, 16	0, 4, 8	2, 6, 10
K*	0, 4, 8	2, 6, 10	0, 4, 8, 2, 6, 10	0, 4, 8	2, 6, 10

2. Функция S₂(b) для октупольных взаимодействий

Основные положения теории уширения спектральных линий давлением достаточно подробно изложены в [1, 4, 6], поэтому здесь отметим только некоторые моменты и дадим в качестве примера выражения функции $S_2(b)$ для нескольких важных случаев мультипольных взаимодействий, существенных при расчете уширения спектральных линий метана.

В схеме АЦК [6] $S_2(b)$ (точнее $S_2(b)_0$) рассчитывается по следующей формуле:

$$S_{2}(b)_{0} = \frac{1}{2} \sum_{M_{f}M_{2}} \frac{(J_{i}K_{i}M_{i}J_{2}K_{2}M_{2}|P^{2}|J_{i}K_{i}M_{i}J_{2}K_{2}M_{2})}{(2J_{i}+1)(2J_{2}+1)} + \sum_{M_{f}M_{2}} \frac{(J_{f}K_{f}M_{f}J_{2}K_{2}M_{2}|P^{2}|J_{f}K_{f}M_{f}J_{2}K_{2}M_{2})}{(2J_{f}+1)(2J_{2}+1)}, \quad (7)$$

где

00

$$P = \int_{-\infty}^{\infty} U_0^{-1} H_c(t) U_0 dt ;$$
(8)

$$(m \mid P \mid n) = \int_{-\infty}^{\infty} \exp(i \omega_{mn} t) (m \mid H_c(t) \mid n) dt.$$
(9)

Здесь $H_c(t)$ – часть межмолекулярного потенциала, ответственная за конкретное мультипольное взаимодействие. Необходимые нам выражения для $H_c(t)$ (для CH₄) можно найти в [2, 4].

Важным свойством оператора *P*, обеспечивающим вычисление матричных элементов в (7), является возможность следующего упрощения [6]:

$$\sum_{\substack{M_i M_2 \\ J_2 K_2 M_2}} (J_i K_i M_i J_2 K_2 M_2 | P^2 | J_i K_i M_i J_2 K_2 M_2) = \sum_{\substack{J_i K_i M_i \\ J_2 K_2 M_2}} |(J_i K_i M_i J_2 K_2 M_2 | P^2 | J_i K_i M_i J_2 K_2 M_2) |^2.$$
(10)

Матричные элементы формул (7)–(10) (как и в [6]) записаны в базисе симметричного волчка. Для вычисления (7) воспользуемся волновыми функциями (6) и данными табл. 1 и 2.

Вводя обозначение

$$R_{J\Gamma'K'}^{J\GammaK'} = \Big| \sum_{\tilde{K}=L}^{K,K} \sum_{k^*,K^{*'}}^{J,J} \alpha_{K\tilde{K}}^{J\Gamma} \mathbf{A}_{\tilde{K}}^{J\Gamma} \mathbf{B}_{\tilde{K}k^*}^{J\Gamma} \alpha_{k'\tilde{k}'}^{J\Gamma'} \mathbf{A}_{\tilde{k}'}^{J\Gamma'} \mathbf{B}_{\tilde{K}'k^{*'}}^{J\Gamma'} [(-1)^J (C_{JK3-2}^{JK} - C_{JK32}^{JK}) + \tau^{\Gamma} C_{JK3-2}^{J-K}] \Big|^2,$$
(11)
$$\tilde{K}=L'$$

можем записать $S_2(b)_0$ в достаточно компактной форме. Пропуская громоздкие промежуточные вычисления, отметим, что при выводе окончательных выражений были учтены следующие соотношения симметрии для коэффициентов Клебша–Гордана [13]:

$$\sum_{M,M} (C_{J3Mm}^{JM})^2 = \frac{(2J+1)}{7}; \quad \sum_{K'} C_{Jk32}^{JK} C_{Jk3-2}^{JK} = 0; \quad C_{aab\beta}^{c\gamma} = (-1)^{b+\beta} \frac{2c+1}{2a+1} C_{c-\gamma b\beta}^{c-\alpha}.$$

а) октуполь-октупольное взаимодействие:

Лаврентьева Н.Н., Савельев В.Н.

32

$$S_{2}(b)_{0} = \frac{16384}{1225} \left(\frac{\Omega_{1} \Omega_{2}}{\hbar \upsilon} \right)^{2} \frac{1}{b^{12}} \sum_{\substack{J_{1}^{\Gamma} K_{i} \\ J_{1}^{\Gamma} K_{i} \\ J_{2}^{\Gamma} \Gamma_{2} K_{2}}} R_{J_{1}^{\Gamma} \Gamma_{i} K_{i}}^{J_{1}^{\Gamma} K_{i}} R_{J_{2}^{\Gamma} \Gamma_{2} K_{2}}^{J_{2}^{\Gamma} \Gamma_{2} K_{2}} f_{5}(k) + [i \to f];$$
(12)

б) октуполь-квадрупольное взаимодействие:

$$S_{2}(b)_{0} = \frac{2048}{875} \left(\frac{\Omega_{1} \Theta_{2}}{\hbar \upsilon} \right) \frac{1}{b^{10}} \sum_{J_{1}^{T} \stackrel{K_{i}}{K_{i}} \atop J_{2}} R^{J_{1}^{T} \stackrel{K_{i}}{K_{i}}}_{J_{1} \stackrel{I}{I_{i}} \stackrel{K_{i}}{K_{i}}} \left(C^{J_{2}0}_{J_{2}020} \right)^{2} f_{4}(k) + [i \to f];$$
(13)

в) дисперсные вклады:

$$S_{2}(b)_{0} = \frac{510\pi^{2}}{57344} \left(\frac{U_{1}U_{2}}{U_{1} + U_{2}} \frac{\alpha_{2}A_{1}}{\hbar \nu} \right)^{2} \frac{1}{b^{12}} \sum_{J_{i} \cap K_{i}} R_{J_{i} \cap K_{i}}^{J_{i} \cap K_{i}} g_{4}(k) + [i \to f] .$$

$$(14)$$

В выражениях (12)–(14), как обычно, индекс 1 относится к поглощающей молекуле, а 2 – к уширяющей; *i*, f – индексы нижнего и верхнего состояний переходов; Ω – октупольный момент; Θ – квадрупольный момент. Обозначения остальных величин и конкретные выражения резонансных функций $f_4(k), f_5(k), g_4(k)$ можно найти в [1–6].

Для рассматриваемых нами случаев уширения давлением часть функции $S_2(b)_m$, ответственная за упругие столкновения, равна нулю, поэтому выражения для $S_2(b)_m$ здесь не приводятся.

3. Расчет уширения линий полосы v4 CH4

В качестве примера рассчитаем по полученным формулам уширение линий P– и R–ветвей полосы v_4 метана при переходах с уровней симметрии A_1 , A_2 , E. Полученные результаты сравним с экспериментальными значениями работы [9] и с результатами более ранних расчетов. Рассмотрим случай уширения спектральных линий CH₄ давлением азота и воздуха. При этом наибольший вклад в уширение дает октуполь-квадрупольное взаимодействие. Появляющийся в основном колебательном состоянии вследствие колебательно-вращательного взаимодействия постоянный дипольный момент имеет слишком малую величину, чтобы дать заметный вклад в уширение.

Как обычно, коэффициент уширения воздуха ү равен:

$$\gamma_{\text{воздух}} = 0,79 \gamma_{N_2} + 0,21 \gamma_{O_2}.$$

По схеме АЦК [1, 2, 4, 6]

$$\gamma^{0}_{J_{i}C_{i}K_{i}} = \frac{n \upsilon}{2\pi c} \sum_{J_{2}} \rho_{J_{2}} \sigma_{J_{2}} ;$$

$$\sigma_{J_{2}} = \pi b_{0}^{2} [1 + S_{2}(b_{0})],$$
(15)

где b_0 – прицельный параметр столкновения; n – плотность молекул при 1 атм; υ – скорость столкновения молекул; ρ_{J_2} – больцмановская заселенность уровня J_2 уширяющей молекулы; σ_{J_2} – сечение столкновения. Расчет проводился при давлении газа 1 атм и T = 296 К. Уровни энергий основного и возбужденного состояний были подсчитаны с использованием вращательных постоянных и постоянных тетраэдрического расщепления, приведенных в [14]. При этом были учтены только диагональные матричные элементы гамильтониана.

Особенности расчета уширения линий

Таблица З

J	Г	n	Эксперимент [9]	AFGL [9]	Расчет [7]	Наш расчет
P_6	A_1	1	0,0580	0,0510	0,0527	0,0565
P_6	A_2	1	0,0599	0,0510	0,0527	0,0618
P_6	Ε	1	0,0586	0,0570	0,0601	0,0607
P_7	A_2	1	0,0574	0,0570	0,0600	0,0600
P_7	Ε	1	0,0461	0,0570	0,0600	0,0592
P_8	A_1	1	0,0515	0,0550	0,0576	0,0523
P_8	Ε	1	0,0465	0,0550	0,0581	0,0491
P_9	A_2	1	0,0570	0,0540	0,0567	0,0625
P_9	Ε	1	0,0505	0,0540	0,0567	0,0560
P_{10}	A_1	1	0,0544	0,0530	0,0555	0,0602
P_{10}	A_2	1	0,0448	0,0520	0,0555	0,0587
R_8	A_1	1	0,0481	0,0540	0,0576	0,0572
R_8	Ε	1	0,0521	0,0540	0,0581	0,0670
R_9	A_1	1	0,0539	0,0530	0,0567	0,0682
R_9	A_2	1	0,0481	0,0540	0,0567	0,0572
-	-					

Уширение линий полосы
ν_4 давлением $N_2~({\rm cm}^{-1}{\cdot}{\rm arm}^{-1})$

Таблица 4

Уширение линий типа А и Е давлением воздуха

J	Г	п	Эксперимент [9]	Эксперимент [8]	AFGL [9]	Расчет [7]	Наш расчет
P_2	Ε	1	0,0654	—	0,0530	0,0531	0,0632
P_3	A_2	1	0,0618	_	0,0580	0,0582	0,0622
P_4	A_1	1	0,0635	_	0,0470	0,0466	0,0632
P_4	E	1	0,0579	-	0,0550	0,0547	0,0603
P_5	Ε	1	0,0556	_	0,0610	0,0612	0,0584
P_6	A_1	1	0,0586	_	0,0510	0,0508	0,0625
P_6	A_2	1	0,0607	_	0,0510	0,0508	0,0558
P_6	Ε	1	0,0603	-	0,0570	0,0569	0,0647
P_7	A_2	1	0,0575	_	0,0570	0,0569	0,0622
P_7	Ε	1	0,0466	_	0,0570	0,0569	0,0543
P_8	A_1	1	0,0521	-	0,0550	0,0547	0,0523
P_8	E	1	0,0477	-	0,0550	0,0552	0,0543
R_0	A_1	1	0,0556	_	0,0610	-	0,0550
R_2	E	1	0,0571	0,0534	0,0490	-	0,0632
R_3	A_2	1	0,0576	_	0,0550	-	0,0678
R_4	$\overline{A_1}$	1	0,0608	0,0586	0,0450	-	0,0632
R_4	E	1	0,0567	0,0547	0,0530	-	0,0603
R_5	Ε	1	0,0553	_	0,0590	-	0,0584
R_6	A_1	1	0,0584	-	0,0500	-	0,0624
R_6	A_2	1	0,0591	_	0,0500	-	0,0701
R_6	Ε	1	0,0556	_	0,0560	-	0,0572
R_7	A_2	1	0,0555	-	0,0550	-	0,0549
R_7	Ē	1	0,0461	-	0,0550	-	0,0543
R_8	A_1	1	0,0497	-	0,0540	-	0,0520
R_8	Ē	1	0,0519	-	0,0540	-	0,0616

Результаты расчетов для случаев уширения азотом и воздухом линий симметрии *A*, *E* приведены в табл. 3 и 4. При этом в табл. 3 не приводятся результаты для малых *J*, так как в эксперименте [9] не получено уширение азотом линий с малым *J*.

Лаврентьева Н.Н., Савельев В.Н.

4. Заключение

Приведенные результаты являются предварительными и нуждаются в уточнении. Вопервых, мы учитывали октуполь-квадрупольное и основное дисперсионное взаимодействия а также более тонкие эффекты. Во-вторых, не проводилась подгонка параметров, таких как Ω, Θ, b_{min} . Дело в том, что Ω, Θ из разных экспериментов довольно сильно отличаются друг от друга, что приводит к большой вариации значений $S_2(b)$. Значения Ω и Θ были взяты из [5].

В настоящее время имеется много экспериментальных результатов по уширению линий СН₄, но далеко не все их можно использовать для сравнения с расчетом, так как в большинстве работ данные имеются лишь для отдельных линий или они представлены графически. Наши данные из табл. 3 и 4 показывают явное различие в расчетных значениях коэффициентов уширения для переходов с уровней А₁, А₂ и Е. Такой зависимости не наблюдается в расчетах других авторов.

В заключение необходимо сказать, что по приведенным формулам можно рассчитывать уширение линий симметрии как A, E, так и F.

Выражения (11), (12) кажутся громоздкими, но при конкретных расчетах они упрощаются, так как соответственно правилам отбора суммирование по некоторым индексам снимается (например, по индексам Γ'_i, K'_i).

1. Tejwani G.D.T., Varanasi P. //J. Chem. Phys. 1971. V. 55. P. 1075-1083.

2. Yamamoto G., Hirono M. //JQSRT. 1971. V. 11. P. 1537-1545.

3. Hirono M. //J. Phys. Soc. Japan. 1973. V. 35. P. 871–882.

4. Varanasi P. //JQSRT. 1974. V. 14. P. 995-1008.

5. Tejwani G.D.T., Varanasi P., Fox K. //JQSRT. 1975. V. 15. P. 243–254.

6. Tsao C. J., Curnutte B. //JQSRT. 1962. V. 2. P. 41-91.

7. T e j w a n i G . D . T ., F o x K . //J. Chem. Phys. 1974. V. 60. P. 2021–2026.

8. Devi V.M., Rinsland S.P., Smith M.-A.H., Benner D.C. //Appl. Opt. 1985. V. 24. P. 3321-3322. 9. Devi V.M., Rinsland S.P., Smith M.-A.H., Benner D.C. //Appl. Opt. 1988. V. 27. P. 631-651.

10. Ozier I., Fox K. //J. Chem. Phys. 1970. V. 52. P. 1416–1421.

11. Itano V. M. //J. Mol. Spectr. 1978. V. 71. P. 193-228.

12. Cheglokov A.E., Ülenikov O.N.//J. Mol. Spectr. 1985. V. 110. P. 53–64.

13. Smith M.-A.H., Rinsland S.P., Devi V.M., Benner D.C. //Spectr. Acta. 1992. V.48A. P 1257-1272

14. Susskind J. //J. Mol. Spectr. 1973. V. 45. P. 457–466.

Интститут оптики атмосферы СО РАН, Томск

Поступила в редакцию 21 июня 1993 г.

N.N. Lavrent'eva, V.N. Savel'ev. Some Peculiarities of Calculating Broadening of Spectral Lines of Tetrahedral Molecules. Rotational Transitions of A and E Types.

The use of symmetry-adapted wave functions for the case of tetrahedral molecules, is shown to allow the calculational formulas for coefficients of broadening of spectral lines due to transitions from energy levels of A_1, A_2 , and E symmetries to be derived. Based on Anderson-Tsao-Curnutte approach, formulas for the function of the emission breakoff, which take into account octupole-octupole, octupole-quadrupole, and the dispersion interactions are derived. For the transitions of A and Etypes the coefficients of broadening of spectral lines from v_{4} band of methane when broadening is due to collisions with molecules of pure nitrogen and air are calculated. A comparison with the experimental data showed quite good agreement.