АДАПТИВНАЯ ОПТИКА

Р.Т. Якупов

УДК 535. 416.3

ПРИМЕНЕНИЕ МЕТОДОВ ВЫПУКЛОГО БУЛЕВА ПРОГРАММИРОВАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧИ ОПТИМАЛЬНОГО РАСПОЛОЖЕНИЯ УПРАВЛЯЮЩИХ ПРИВОДОВ В ГИБКИХ ЗЕРКАЛАХ

Предлагается подход к решению задачи оптимального расположения приводов в гибких зеркалах, основанный на применении методов выпуклого булева программирования.

В последнее время адаптивная оптика широко используется для повышения качества приема оптических сигналов, проходящих через слой турбулентной атмосферы [1–3]. При проектировании систем адаптивной оптики (таких, как гибкие мембранные и пластинчатые зеркала) одной из важных задач является определение мест расположения управляющих приводов [4]. От того, насколько удачно расположены приводы, в значительной степени зависит качество оптической системы.

Известны приближенные методы решения таких задач [4]. Недостатком приближенных методов является то, что в них трудно оценить, насколько близко получающееся решение к оптимальному. В данной статье предлагается подход, позволяющий получать точное решение для выбранного критерия оптимальности, либо приближенное решение с гарантированной относительной или абсолютной точностью (по величине критерия качества).

1. При формулировке проблемы будем в основном придерживаться описания задачи коррекции фазовых искажений, принятого в [4]. Искажение волнового фронта характеризуется функцией $\varphi(\mathbf{r})$. На поверхности зеркала выбрана некоторая сетка координат допустимых мест расположения управляющих приводов (*N* узловых точек). Ошибку коррекции волнового фронта будем характеризовать величиной

$$\Delta^2 = \frac{1}{s} \int_{\Omega} \gamma^2(\mathbf{r}) \left[\phi(\mathbf{r}) - \sum_{i=1}^N b_i^{1/2} u_i R_i(\mathbf{r}) \right]^2 d^2 \mathbf{r}$$
(1)

В дальнейшем для краткости область интегрирования Ω в интегралах мы будем опускать.

В формуле (1) Ω – область коррекции волнового фронта; u_i – величина управляющего воздействия; $R_i(\mathbf{r})$ – функция отклика; b_i – индикаторная переменная, принимающая значения 0 и 1 (1 – если управляющий привод располагается в *i*-м узле сетки и 0 – если нет); $\gamma^2(\mathbf{r})$ – весовая функция (которая в частном случае может быть равна 1), характеризующая значимость ошибок коррекции в соответствующей зоне зеркала; 1/s – нормировочный множитель, в котором $s = \int \gamma^2(\mathbf{r}) d^2\mathbf{r}$.

Предполагается, что при фиксированном расположении приводов управляющие воздействия определяются на основе минимизации функции

$$f(\mathbf{u}) = \Delta^2(\mathbf{u}; \mathbf{b}) + \lambda \, \mathbf{u}^{\mathrm{T}} \mathbf{u} \,, \tag{2}$$

где **b** – вектор булевых переменных **b** = $(b_1, ..., b_N)$; **u** – вектор управляющих воздействий **u** = $(u_1, ..., u_N)$; буква <T> обозначает транспонирование.

Такая формулировка является, конечно, идеализированной, поскольку предполагает наблюдение фазы волнового фронта на всей апертуре и возможность мгновенной коррекции искажений. Однако в задаче оптимального расположения приводов такая постановка является вполне оправданной. Первое слагаемое в (2) характеризует ошибку коррекции фазовых искажений, второе слагаемое имеет смысл добавки, штрафующей большие значения управляющих воздействий. Величина штрафующей добавки регулируется параметром λ и при желании может быть сведена к нулю.

Оптимальное управляющее воздействие \mathbf{u}^* при фиксированном \mathbf{b} можно найти как решение уравнения, которое получается путем приравнивания нулю производных функции f по всем компонентам \mathbf{u} . Опуская выкладки, запишем выражение для оптимального управления:

$$\mathbf{u}^* = (\lambda I + BDB)^{-1}B\mathbf{c}$$
,

где $B = \text{diag}(b_1^{1/2}, ..., b_N^{1/2})$; элементы вектора **с** и матрицы D определяются по формулам

$$c_i = \int \gamma^2(\mathbf{r}) \, \phi(\mathbf{r}) \, R_i(\mathbf{r}) \, d^2 \mathbf{r} ; \quad D_{ij} = \int \gamma^2(\mathbf{r}) \, R_i(\mathbf{r}) \, R_j(\mathbf{r}) \, d^2 \mathbf{r} .$$

Критерий оптимизации расположения приводов возьмем в виде

$$J(\mathbf{b}) = \langle \Delta^2(\mathbf{u}^*, \mathbf{b}) \rangle,$$

где угловые скобки обозначают усреднение по ансамблю реализаций.

Подставляя выражение для **u*** в формулу (1), после некоторых преобразований получим:

$$J(\mathbf{b}) = \frac{1}{s} \int \gamma^2(\mathbf{r}) < \varphi^2(\mathbf{r}) > d^2\mathbf{r} - \langle \mathbf{c}^{\mathrm{T}} B V B \mathbf{c} \rangle - \lambda \langle \mathbf{c}^{\mathrm{T}} B V V B \mathbf{c} \rangle,$$

где $V = (\lambda I + B D B)^{-1}$.

Используя оператор вычисления следа матрицы tr и вводя обозначение $Q = \langle \mathbf{cc}^T \rangle$, запишем

$$J(\mathbf{b}) = \frac{1}{s} \int \gamma^2(\mathbf{r}) < \varphi^2(\mathbf{r}) > d^2\mathbf{r} - tr(QL) ,$$

где $L = B V (I + \lambda V) B$.

Элементы матрицы Q определяются по формуле

$$Q_{ij} = \int \int \gamma^2(\mathbf{r}) \gamma^2(\boldsymbol{\rho}) < \varphi(\mathbf{r}) \varphi(\boldsymbol{\rho}) > R_i(\mathbf{r}) R_j(\boldsymbol{\rho}) d^2 \mathbf{r} d^2 \boldsymbol{\rho} .$$

Задача оптимального расположения приводов записывается в виде

min $J(\mathbf{b})$; $\mathbf{b} \in \Psi$; $\mathbf{b} \in \{0, 1\}^N$.

Множество Ч в простейшем случае имеет вид

$$\Psi = \left\{ \mathbf{b} : \sum_{i=1}^{N} b_i = M \right\},\$$

что соответствует решению задачи оптимизации при наличии M приводов. Отметим, что в общем случае Ψ может быть определено системой линейных равенств и (или) неравенств, отвечающих условиям задачи.

2. При исследовании свойств J относительно оптимизируемой переменной в данном разделе мы будем рассматривать **b** как непрерывную векторную переменную **b** \ge 0.

Введем обозначение

$$W = B V B = (\lambda F^{-1} + D)^{-1} = D^{-1} - D^{-1} \left(\frac{1}{\lambda} F + D^{-1}\right)^{-1} D^{-1},$$

где $F = \text{diag}(b_1, ..., b_N)$.

(3)

После несложных преобразований для L получим равенство

$$L = 2 W - W D W.$$

Пусть $\delta \mathbf{b}$ – малая вариация независимой переменной. Рассмотрим первые две вариации $L(\mathbf{b})$:

$$\delta L = 2 \,\delta W - \delta W D W - W D \,\delta W;$$

$$\delta^2 L = \delta^2 W D (D^{-1} - W) + (D^{-1} - W) D \delta^2 W - 2 \delta W D \delta W.$$

Для вариаций *W*(**b**) имеем:

$$\delta W = \frac{1}{\lambda} D^{-1} Z \,\delta F Z D^{-1} ;$$

$$\delta^2 W = -\frac{2}{\lambda^2} D^{-1} Z \,\delta F Z \,\delta F Z D^{-1} \le 0 ,$$

где $Z = \left(\frac{1}{\lambda}F + D^{-1}\right)^{-1}$.

Учитывая, что $D^{-1} - W$, $-\delta^2 W$ и D – неотрицательно определенные матрицы, получаем неравенство $\delta^2 L \le 0$, откуда следует, что

$$\delta^2 J = -tr(Q\delta^2 L) \ge 0 ,$$

то есть $J(\mathbf{b})$ является выпуклой функцией по $\mathbf{b} \ge 0$.

3. В результате исследования свойств *J*(b) мы выяснили, что (3) является задачей выпуклого булева программирования. Для решения таких задач можно использовать эффективные вычислительные алгоритмы. Мы воспользуемся алгоритмом из [5] с простой его модификацией, позволяющей находить не только точное решение, но и приближенные решения с гарантированной абсолютной или относительной точностью. Ниже приводится схема алгоритма.

Пусть имеется начальная точка $\mathbf{b}^0 \in \Psi$, ε – заданная абсолютная величина допуска на точность поиска (по величине критерия качества). Положим $m = J(\mathbf{b}^0) - \varepsilon$. Переменной – счетчику итераций присвоим начальное значение i = -1.

1) Полагаем i = i + 1. Строим касательную гиперплоскость к $J(\mathbf{b})$ в точке \mathbf{b}' :

$$g_i(\mathbf{b}) = J(\mathbf{b}^i) + \sum_{j=1}^N \left. \frac{\partial J(\mathbf{b})}{\partial b_j} \right|_{\mathbf{b}=\mathbf{b}^i} (b_j - b_j^i).$$

2) Определяем множество

$$M_i = \{ \mathbf{b} : g_0(\mathbf{b}) < m ; ... ; g_i(\mathbf{b}) < m ; \mathbf{b} \in \Psi \} .$$

3) Находим число k такое, что

$$J(\mathbf{b}^k) = \min \left[J(\mathbf{b}^0), \dots, J(\mathbf{b}^i) \right].$$

Полагаем $m = J(\mathbf{b}^k) - \varepsilon$.

4) Если множество M_i пусто, то решением задачи (3) с гарантированной абсолютной точностью є будет **b**^k.

5) Если M_i не пусто, то находим решение **b**ⁱ⁺¹ задачи линейного булева программирования

min
$$g_i(\mathbf{b})$$
; $\mathbf{b} \in M_i$; $\mathbf{b} \in \{0, 1\}^N$.

6) Возвращаемся к п.1.

Заметим, что в п.5 в качестве \mathbf{b}^{i+1} можно взять любую допустимую точку из множества M_i . Описанный алгоритм сходится за конечное число итераций.

Р.Т. Якупов

394

При необходимости решения оптимизационной задачи с заданным относительным допуском δ в приведенном выше алгоритме нужно положить перед входом в цикл $m = (1 - \delta^*) J(\mathbf{b}^0)$, а в теле итерационного цикла $m = (1 - \delta^*) J(\mathbf{b}^k)$, где $\delta^* = \delta/(1 + \delta)$.

4. Рассмотрим задачу оптимального расположения М управляющих приводов на гибком зеркале для случая, когда

$$\gamma^{2}(\mathbf{r}) = \exp\{-|\mathbf{r}|^{2}/r_{\gamma}^{2}\};$$

$$R_{i}(\mathbf{r}) = \exp\{-|\mathbf{r}-\mathbf{r}_{i}|^{2}/r_{R}^{2}\};$$

$$\langle \phi(\mathbf{r}) \phi(\mathbf{\rho}) \rangle = \sigma_{\phi}^{2} \exp\{-|\mathbf{r}-\mathbf{\rho}|^{2}/r_{0}^{2}\}$$

где \mathbf{r}_i (i = 1, ..., N) – координаты узловых точек; r_0 – радиус корреляции Фрида для флуктуаций волнового фронта.

Для того чтобы иметь возможность проведения аналитических расчетов элементов матриц Q и D, предполагалось, что круговая область Ω имеет радиус, намного превышающий r_y . Элементы матриц Q и D при этом определяются по формулам

$$\begin{aligned} \mathcal{Q}_{ij} &= \frac{\pi^2 s_{\phi}^2}{\eta} \exp\left\{-\frac{1}{\eta r_R^4} \left(r_i^2 + r_j^2\right) \left(\eta r_R^2 - \alpha\right) - \frac{2}{r_0^2} r_i r_j \cos(\theta_i - \theta_j)\right\};\\ D_{ij} &= \frac{\pi \left(r_R^2 + r_\gamma^2\right)}{r_R^2 + 2 r_\gamma^2} \exp\left\{-\frac{1}{r_R^2 \left(r_R^2 + 2 r_\gamma^2\right)} \left[\left(r_i^2 + r_j^2\right) \left(r_R^2 + r_\gamma^2\right) - 2 r_i r_j r_\gamma^2 \cos(\theta_i - \theta_j)\right]\right\},\\ &= \frac{1}{r_{\phi}^2} + \frac{1}{r_{\phi}^2} + \frac{1}{r_{\phi}^2}; \ \eta = \alpha^2 - \frac{1}{r_{\phi}^4}. \end{aligned}$$

где $\alpha =$

Сетка допустимых узловых точек (N = 31) была выбрана как в [4] на <паутине>, образованной тремя равноотстоящими концентрическими окружностями и двенадцатью выходящими из центра через равные углы лучами. В качестве узловых были взяты центральная точка, нечетные точки на пересечении первой (внутренней) окружности с лучами и все точки пересечения второй и третьей окружностей с лучами. Радиусы окружностей равны соответственно 2, 4 и 6 (в данном примере рассматриваются безразмерные величины).

При проведении расчетов приняты следующие численные значения параметров: $\sigma_{\alpha}^2 = 0,01;$ $r_0 = 15; r_{\gamma} = 6; r_R = 10; \lambda = 0,3.$

Решалась задача размещения четырех приводов.

На ПЭВМ ІВМ РС/АТ было проведено исследование предложенного подхода к решению задачи оптимального расположения приводов. Оказалось, что число итераций в алгоритме выпуклого булева программирования существенно зависит от величины допуска на точность решения (чем < грубее> решение, тем меньше итераций).

В табл. 1 приведены результаты, полученные для разных значений относительного допуска при начальной точке b^0 , соответствующей узловым точкам с номерами 2, 3, 5, 6. J^* – значение критерия качества, соответствующее получаемому в результате поиска аргумента b.

Таблица 1

Таблица	2

\$ (0/)	<i>t</i> * 103	Номера узповых				Инспо итераций	Номер итерации	1103	H	Mena	VOTOR	LIV
0 (70)	$J^{*} 10^{\circ}$	точек				писло итерации	помер итерации	$J \cdot 10^{\circ}$	точек			ыл
0	1,799	21	24	27	30	65	1	2,365	2	3	5	6
1	1,799	21	24	27	30	48	2	2,106	23	24	25	30
2	1,799	21	24	27	30	40	3	2,496	19	20	28	29
5	1,835	22	24	27	30	22	4	2,052	4	18	20	24
10	1,886	22	23	27	31	8	5	2,064	11	22	27	28
20	1,928	4	20	24	29	5	6	1,976	11	15	30	31
							7	1,886	22	23	27	31
							8	1,902	13	21	26	29

Из табл. 1 видно, что при относительных допусках 1 и 2 % полученные решения совпадают с точным. При относительной точности 10 % решение получается за 8 итераций (что в

Применение методов выпуклого булева программирования

8 раз меньше числа итераций при поиске точного решения), то есть примерно на порядок быстрее, чем точное решение.

Процесс поиска для случая $\delta = 10\%$ показан в табл. 2.

Поиск завершается через 8 итераций. В качестве приближенного решения с гарантированной точностью 10% принимается точка, полученная на седьмой итерации.

Отметим, что описанный подход может быть использован в сочетании с другими приближенными и эвристическими алгоритмами (известными или которые будут разработаны), в том числе – для оценки их точности.

1. В оронцов М.А., Шмальгаузен В.И. Принципы адаптивной оптики. М.: Наука, 1985, 335 с.

2. Лукин В.П. Атмосферная адаптивная оптика. Новосибирск: Наука, 1986, 247 с.

З. Евсеев О.А., Исупов А.Н., Шишаков К.В. // Оптика атмосферы. 1989. Т. 2. N 8. С. 830-835.

4. Шишаков В.К., Шмальгаузен В.И.// Оптика атмосферы. 1989. Т. 2. N 3. С. 326–328.

5. Я к у п о в Р. Т. Оптимизация систем управления и фильтрации. Томск: Изд-во Томского ун-та, 1977. С 128–131.

Сибирский физико-технический институт им В.Д. Кузнецова, Томск Поступила в редакцию 9 июля 1992 г

 $R\,.\,T\,.\,\,Y\,a\,k\,u\,p\,o\,v\,.\,\,\, \mbox{Application of the Convex Boolean Programming Methods to Solution of the Problem on Optimal Allocation of Actuators over Deformable Mirrors.}$

An approach to solution of the problem on optimal allocation of actuators over deformable mirrors based on the method of convex Boolean programming is proposed.