Ю.И. Терентьев

ХАРАКТЕР ЗАВИСИМОСТИ ИНТЕНСИВНОСТИ СВЕТА НА ОСИ ПУЧКА ОТ ШИРИНЫ ОГРАНИЧИВАЮЩЕЙ ЕГО ЩЕЛИ НА ОСНОВАНИИ ПРЕДСТАВЛЕНИИ ЮНГА

Дается объяснение зависимости интенсивности света на оси пучка от ширины ограничивающей его щели, исходя из интерференции краевых лучей с осевыми лучами.

Получены выражения для полуширины ограничивающей щели во время максимумов и минимумов освещенности на оси пучка и интенсивности, согласующиеся с экспериментом.

Рассмотрены условия, вызывающие значительное усиление колебаний интенсивности на оси пучка с изменением ширины ограничивающей щели при постоянных параметрах схемы и интенсивности падающего света.

В работе [1] рассмотрено количественное описание дифракционной картины света от щели, наблюдающейся в области геометрической тени, основанное на интерференции лучей, дифрагировавших у противоположных краев экранов, образующих щель. Это стало возможным, благодаря установлению новых данных, относящихся к краевой волне [2].

В отличие от упомянутых условий в пределах проекции щели одновременно с краевыми лучами распространяются прямопроходящие лучи. Поэтому интенсивность света в произвольных точках на оси пучка должна определяться интерференцией краевых и прямопроходящих лучей.

Ее схема показана на рис. 1, где 1, 2 — краевые, 3 — прямопроходящие лучи, сходящиеся на оси пучка в плоскости щели u_{33} , имеющей ширину 30 мкм; u_{2} — щель переменной ширины, расположенная симметрично оси пучка, идущего от щели u_{11} шириной 30 мкм; l и L — расстояния от u_{22} соответственно до источника света (u_{11}) и u_{33} ; h — расстояние от границы геометрической тени (г. т.) до оси пучка в плоскости u_{33} ; ε — угол отклонения краевых лучей от первоначального направления; t_{11} — полуширина u_{22} .

Рис. 1. Схема интерференции лучей, дифрагировавших у краев щели переменной ширины, с осевыми лучами

Основываясь на данной схеме, выведем формулу, характеризующую появление максимумов и минимумов интенсивности света в плоскости u_3 , в точке Q с изменением ширины u_2 . Полная разность хода между лучами 1, 2 и 3 равна $\Delta = (\Delta_r - \Delta_{\alpha})$, где Δ_r – геометрическая разность хода между упомянутыми лучами, а Δ_{α} – дополнительная разность хода, равная $0,69\lambda/2$ и обусловленная начальным скачком фазы на $0,69\pi$ у краевых лучей, распространяющихся в освещенную область, по

ходу луча [2]. Очевидно, $\Delta_r = (\Delta_1 + \Delta_2)$. Поскольку $\Delta_1 = t_n^2 / 2l$; $\Delta_1 = t_n^2 / 2L$; то $\Delta_r = \frac{t_n^2(L+l)}{2Ll}$. Тогда

$$\Delta = \left[\frac{t_{\pi}^2 \left(L+l\right)}{2Ll} - \frac{0,69\lambda}{2}\right] = \kappa \lambda/2.$$

Откуда

$$t_{n} = \sqrt{(0,69+\kappa)\frac{\lambda Ll}{(L+l)}},$$
(1)

где κ — число $\lambda/2$ в полной разности хода между интерферирующими лучами; $\kappa = 0, 2, 4$... соответствует максимумам; $\kappa = 1, 3, 5$... — минимумам освещенности в т. *Q*. В справедливости (1) легко убедиться по данным табл. 1, 2, в которых сравнивается полуширина щели $t_{n\cdot p}$, рассчитанная по данной формуле, с ее действительными значениями $t_{n.n}$, где $\Delta t = (t_{n.n} - t_{n.p})$.

Таб	ЛИ	ца	1
-----	----	----	---

Т	а	б	л	И	ц	а	2
---	---	---	---	---	---	---	---

<i>l</i> =51,5	мм;	L = 408,5	мм; λ=0	,53 мкм	l = 100	мм; І	L=191,5 M	им; λ=0,5	3 мкм
По- лоса	κ	t _{п.д} , мм	<i>t</i> _{п.р} , мм	Δ <i>t</i> , мкм	По- лоса	κ	t _{п.д} , мм	<i>t</i> _{п.р} , мм	Δ <i>t</i> , мкм
max ₁	0	0,1335	0,1293	4,2	max ₁	0	0,1583	0,155	3,3
min_1	1	0,201	0,2024	-1,4	min ₁	1	0,2473	0,2426	4,7
max_2	2	0,256	0,2554	0,6	max_2	2	0,3083	0,306	2,3
min_2	3	0,3005	0,299	1,5	mina	3	0.3603	0.3585	1.8
max_3	4	0,3385	0,3372	1,3	mov	4	0 4073	0.4040	33
min ₃	5	0,373	0.3714	1.6	max ₃	-	0,4073	0,4040	0,0
max₄	6	0.4035	0.4027	0.8	min_3	5	0,4473	0,445	2,3
min₄	7	0,4335	0.4318	1.7	max ₄	6	0,4843	0,482 6	1,8
max ₅	8	0,461	0,459	2	min ₄	7	0,5183	0,5175	0,8

В качестве следующего шага найдем выражения, характеризующие интенсивность света на оси пучка во время ее максимальных и минимальных значений. Согласно [2] интенсивность граничных лучей $J_r = A/h^2$, где $J_r = J_{r1} = J_{r2}$. Как видно из рис. 1, $h = t_n \frac{L+l}{l}$. В таком случае J_r и амплитуда граничных лучей a_r равны $J_r = \frac{Al^2}{t_n^2(L+l)^2}$, $a_r = \frac{\sqrt{Al}}{t_n(L+l)}$.

Благодаря сложению амплитуд интерферирующих лучей, в максимумах освещенности результирующая амплитуда $a_{\max} = (2a_r + a_c)$, где $a_c -$ амплитуда прямопроходящих лучей на оси пучка. Тогда $J_{\max} = a_{\max}^2 = (4J_r + 4\sqrt{J_rJ_c} + J_c)$, где $J_c -$ интенсивность осевых лучей. На основании [3] для цилиндрической волны $A = 0,02046\lambda L(L + l)J_{c.\kappa}/l$, где $J_{c.\kappa} -$ интенсивность прямопроходящих лучей в плоскости u_3 при выведенной из пучка u_2 на предполагаемой границе тени от экранов последней. Учитывая это, получим:

$$J_{\rm r} = \frac{0.02046\lambda L l J_{\rm c.\,\kappa}}{t_{\rm fl}^{4} (L+l)},$$
(2)

$$J_{\max} = \left[\frac{0.08184 \lambda L I J_{c.\kappa}}{t_{\pi}^{2} (L+l)} + \frac{4}{t_{\pi}} \sqrt{\frac{0.02046 \lambda L I J_{c.\kappa} J_{c}}{L+l}} + J_{c} \right],$$
(3)

где t_n – расчетная полуширина u_2 во время максимумов освещенности на оси пучка. Если вместо t_n подставить ее значение из (1), тогда

$$J_{\max} = \left[\frac{0.08184 J_{c.\kappa}}{0.69 + \kappa} + 4 \sqrt{\frac{0.02046 J_c J_{c.\kappa}}{0.69 + \kappa}} + J_c\right].$$
(4)

В минимумах освещенности $a_{\min} = (a_c - 2a_r)$, следовательно, $J_{\min} = (J_c + 4J_r - 4\sqrt{J_cJ_r})$. После замены J_r ее значением из (2) имеем

$$J_{\min} = \left[\frac{0,08184\lambda L l J_{c.\kappa}}{t_{\pi}^{2} (L+l)} - \frac{4}{t_{\pi}} \sqrt{\frac{0,02046\lambda L l J_{c.\kappa} J_{c}}{L+l}} + J_{c}\right].$$
(5)

Решая совместно (5) и (1), выразим J_{\min} через κ .

$$J_{\min} = \left[\frac{0.08184J_{c.\kappa}}{0.69 + \kappa} - 4\sqrt{\frac{0.02046J_{c.\kappa}J_c}{0.69 + \kappa}} + J_c\right].$$
(6)

Соответствие формул (3), (5) и, следовательно, (4), (6) эксперименту подтверждается данными табл. 3, где J_{9} — экспериментальные значения интенсивности; J_{p} — расчетные значения интенсивности, найденные по формулам (3), (5). Здесь же показано постоянство A для всех зарегистрированных максимумов и минимумов, являющееся дополнительным подтверждением ранее установленного характера изменения J_{r} . С этой целью находились $a_{9} = \sqrt{J_{9}}$ и $a_{c} = \sqrt{J_{c}}$, $a_{r} = (a_{9} - a_{c})/2$, $J_{r} = a_{r}^{2}$, $h_{p} = f(t_{п.p})$ и, наконец, $A = J_{r}h_{p}^{2}$. В последней колонке таблицы приведены значения интенсивности краевой волны при $J_{c.k} = J_{c}$, равные $J'_{r} = J_{r}J_{c}/J_{c.k}$.

Если рассмотреть интерференцию осевых лучей с лучами от одного края u_{42} в max₁ при $J_{c\cdot\kappa} = J_c$, то $a'_r = \sqrt{J'_r} = 0,63$; $a_{\max_1} = (a_c + a'_r) = 4,516$; $J_{\max_1} = a^2_{\max_1} = 20,394$; $J_{\max_1} / J_c = 1,351$. С учетом погрешности измерений данное отношение равно его значению при дифракции от экрана [3], что лишний раз свидетельствует о правильности объяснения причин, определяющих интенсивность света в обоих случаях.

Чтобы найти интенсивность света на оси пучка при произвольных значениях ширины u_{42} , воспользуемся правилом сложения когерентных колебаний. В соответствии с ним

$$J_{\rm p.\,\pi} = [a_{\rm c}^2 + (2a_{\rm r})^2 + 2a_{\rm c}\,a_{\rm r}\cos\psi] = (J_{\rm c} + 4J_{\rm r} + 4\sqrt{J_{\rm c}J_{\rm r}}\cos\psi),\tag{7}$$

где ψ — разность фаз между осевыми и краевыми лучами. Очевидно, что

$$\Psi = \frac{2\pi}{\lambda} \Delta = \left[\frac{t_{\pi}^2 (L+l) - 0.69\lambda Ll}{\lambda Ll} \right] 180^{\circ}.$$

Заменяя ψ и J_{r} их значениями, получим

$$J_{\rm p.n} = \left\{ J_{\rm c} + \frac{0,08184\lambda L l J_{\rm c.\kappa}}{t_{\rm n}^2 (L+l)} + \frac{4}{t_{\rm n}} \, \bigvee \, \frac{\overline{0,02046\lambda L l J_{\rm c} J_{\rm c.\kappa}}}{L+l} \cos\left[\frac{t_{\rm n}^2 (L+l) - 0,69\lambda L l}{\lambda L l}\right] 180^\circ \right\}.$$
(8)

Таблица З

1	$l = 100 \text{ mm}; L = 191,5 \text{ mm}; \lambda = 0,53 \text{ mkm}$													
	<i>t</i> _{п.р} , мм	J _a	Jc	$J_{\rm o}/J_{\rm c}$	$J_{c.\kappa}/J_c$	Jp	a _a	ac	a _r	Jr	h _p	A	ε°	J' _P
maxı	0,155	26,4	15,1	1,748	0,989	27,16	5,138	3,886	0,626	0,392	0,452	0,08	0,136	0,396
\min_1	0,2426	9,5	—»—	0,629	0,966	9,28	3,082	»	0,4019	0,1615	0,707	0,081		0,167
max ₂	0,306	20,4	»	1,351	0,949	20,66	4,517	»	0,3153	0,0994	0,892	0,079	-	0,105
min_2	0,3585	11,16	»	0,74	0,934	11,07	3,3406	»	0,273	0,0745	1,045	0,0814	-	0,08
max ₃	0,404	19,8	»	1,263	0,908	19,14	4,368	»	0,2409	0,058	1,178	0,0796		0,064
min_3	0,445	11,89		0,788	0,886	11,89	3,449	»	0,2186	0,0478	1,298	0,0805		0,054
max_4	0,4826	18,37	-*-	1,247	0,859	18,35	4,286	»	0,200	0,040	1,407	0,0792	_	0,047
\min_4	0,5175	12,35	-»	0,818	0,833	12,4	3,5145	»	0,1857	0,0345	1,509	0,0785		0,042

В табл. 4 приведены значения $J_{p,\pi}$ и $J_{\mathfrak{s}}$ при $t_{\pi} = t'_{\mathfrak{n}} = (t_{\pi,\mathfrak{q}} - 2 \text{ мкм})$ [1]. Они показывают, что на боках максимумов, соответствующих меньшей ширине u_{2} , $J_{p,\pi}$ несколько больше $J_{\mathfrak{s}}$, а на противоположных сторонах, наоборот, несколько меньше. При уменьшении $\varepsilon = 57, 3^{\circ}t'_{\pi} \frac{L+l}{lL}$, начиная примерно с $\varepsilon = 0,123^{\circ}$ (если принять во внимание некоторое завышение $J_{p,\pi}$ относительно $J_{\mathfrak{s}}$ на ближних боках максимумов), вступает в действие новый фактор, приводящий к значительному отставанию роста $J_{\mathfrak{s}}$ от L. Поставлиция вызвание новый странция в [2] нарушением обратнопропоршенальной зависи.

максимумов), вступает в деиствие новый фактор, приводящий к значительному отставанию роста $J_{\mathfrak{s}}$ от $J_{p.n}$. Последний вызван, как уже отмечалось в [2], нарушением обратнопропорциональной зависимости амплитуды краевой волны от угла отклонения дифрагированных лучей, когда є меньше критического значения ε_{κ} . Для выяснения особенностей поведения краевых лучей на углах, меньших ε_{κ} , построим график $J'_{\Gamma} = f(h)$ по точкам, соответствующим J_{Γ} в установленных максимумах и минимумах интенсивности (табл. 3) и на границе тени (рис. 2). В случае дифракции от экрана отношение интенсивности света на границе тени к интенсивности света, падающего на нее в отсутствие экрана, постоянно и по данным многочисленных экспериментов равно в среднем 0,306. Прямопроходящие лучи, направленные первоначально на границу тени, из-за дифракции в области края экрана не должны достигать ее. Поэтому интенсивность света на границе тени от экрана является по существу интенсивностью краевой волны. Благодаря общности причин, создающих дифракционную картину от экрана и определяющих освещенность на оси пучка, интенсивность краевой волны на границе тени в рассматриваемых условиях должна быть равной $0,306J_{c.\kappa}$ или $0,306J_c$ (поскольку при малых $t_{\Pi} J_{c.\kappa} \simeq J_c$). В таком случае необходимая для построения указанного графика J'_{Γ} на границе тени будет равна: $J'_{\Gamma} = 0,306 \cdot 15, 1 = 4,62$ от.ед.

Таблица 4

		<i>l</i> =	=100 мм; 1	L=191,5 мм;	λ=0,53 мкм		
-	<i>t</i> ′ _п , мм	Jə	J _{p.n}	$\int J_{p.n}/J_{\vartheta}$	ψ	cos ψ	ε°
	0,0713	9,85	20,45	2,076	-97°55′	-0,1377	
	0.0813	12,35	21,6	1,75	-90°2′	0	
	0.0913	14,45	23	1,59	-81°6′	0,1548	
	0,1013	17,25	24,43	1,416	-71°9′	0,3231	
	0,1113	19,55	25,78	1,32	-60°10′	0,4975	
	0,1213	22,05	26,9	1,22	-48°8'	0,6674	
	0,1313	24,15	27,6	1,144	-35°5′	0,8183	0,114
	0,1413	25,5	27,9	1,094	-21°	0,9337	0,123
	0,1513	26,45	27,6	1,043	- 5°51′	0,9948	0,132
max ₁	0,1568	26,45	27,13	1,03	2°5′	1	0,137
	0,1613	26,45	26,6	1,005	10°18′	0,9839	
	0,1713	26,65	24,9	0,97	27°30′	0,887	
	0,1813	23,95	22,6	0,944	45°44'	0,698	
	0,1913	21,5	19,84	0,923	65°	0,4229	
	0,2013	18,55	16,82	0,907	85°17′	0,0823	
	0,2113	15,4	13,88	0,901	106°37'	-0,286	
	0,2213	12,45	11,36	0,915	129°	-0,6291	
	0,2313	10,55	9,73	0,929	152°28'	-0,8861	
min ₁	0,2433	9,45	9,21	0,975	181°49'	-0,9995	
	0,2513	9,65	9,85	1,02	202°17′	-0,9253	
	0,2613	11,35	11,72	1,033	228°47′	0,659	
	0,2713	13,55	14,28	1,054	256°19'	-0,2366	
	0,2813	16,25	17,06	1,05	284°53'	0,2568	
	0,2913	19,1	19,38	1,015	314°29'	0,7007	
max ₂	0,3078	20,45	20,64	1,01	365°35′	0,9953	
	0,3213	18,9	18,24	0,965	416°9′	0,557	
	0,3313	16,35	16,03	0,981	443°14'	0,1178	

Если подставить в (7) $J'_{\rm r}$, взятые из графика при є < є, то $J_{\rm p,n}$ все равно получается отличной от $J_{\mathfrak{d}}$. Это можно объяснить только появлением расхождения между действительными ψ и ψ), определяемыми формулой $\psi = \left[\frac{(t'_{\rm n})^2(L+l) - 0, 69\lambda Ll}{\lambda Ll}\right]$ 180°, которое может быть вызвано лишь изменением начального сдвига фаз. Заменим 0,69 на κ_0 и преобразуем формулу к виду $\kappa_0 = \frac{(t'_{\rm n})^2(L+l) - \lambda Ll\psi / 180^\circ}{\lambda Ll}$. Подставляя в (7) вместо $J_{\rm p,n}$ и $J_{\rm r} J_{\mathfrak{d}}$ (при различных $t'_{\rm n}$) и $J'_{\rm r}$, определяение и раски ставлят в ставите сами и стави и ставите сами и стави и стави

ляемые графиком, найдем ψ , а по ним и κ_0 . Данные расчета занесены в табл. 5. Из нее видно, что при $\varepsilon < \varepsilon_{\kappa}$ уменьшение t'_{π} , а следовательно, и ε сопровождается падением κ_0 до нуля с последующим изменением до -1.

Таким образом, в рассматриваемом интервале изменения є начальный сдвиг фазы у краевых лучей, распространяющихся в освещенную область, перестает быть постоянной величиной и изменяется так, что опережение по фазе постепенно сменяется запаздыванием, увеличивающимся в пределах до $-\pi$.

таолица о	Т	а	б	л	И	ц	а	5
-----------	---	---	---	---	---	---	---	---

		l	=100 мм;	; L=191	,5 мм; λ⇒0,	53 мкм		
	<i>t</i> ′ _п , мм	<i>h</i> _р , мм	J'r	J _a	cos ψ	ψ°	ĸ	ε°
max ₁	0,1563	0,456	0,396	26,45	_		0,696	0,136
	0,1513	0,441	0,43	26,45	0,9523	17,88	0,558	_
	0,1413	0,412	0,48	25,5	0,7935	37,5	0,365	
	0,1313	0,383	0,51	24,15	0,6315	50,8	0,213	
	0,1213	0,354	0,6	22,1	0,3812	67,6	0,047	
	0,1113	0,324	0,66	19,55	0,1433	81,77	0,1	0,1
	0,1013	0,295	0,755	17,25	0,0644	93,68	0,226	
	0,0913	0,266	0,86	14,45	-0,2837	106,48	0,352	0,08
	0,0813	0,237	0,99	12,3	0,437	115,9	0,454	
	0,0713	0,208	1,15	9,85	0,591	126,2	0,555	
	0,0613	0,179	1,35	7,45	0,7226	136,3	0,65	
	0,0513	0,150	1,6	5,45	0,8163	144,7	0,728	
	0,0413	0,120	1,9	3,45	0,8985	154,0	0,811	
	0,0313	0,091	2,26	2,05	-0,9454	161,0	0,863	
	0,0213	0,062	2,65	1,07	0,9734	166,8	0,911	
	0.0113	0,033	3,4	0,35	-0.989	171.53	-0,948	

 $\begin{array}{c}
 & \overline{t}_{0} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{3} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_{1} \\
 & \overline{t}_{2} \\
 & \overline{t}_$

Рис. 2. Зависимость интенсивности краевых лучей на оси пучка от расстояния между точкой наблюдения и границей тени, образованной экранами щели переменной ширины

Рис. 3. Схема усиления интенсивности краевых лучей на оси светового пучка

При замене падающего на u_{l_2} расходящегося пучка параллельным $l = \infty$ формулы (1)—(3), (5), (8) принимают вид:

$$t_{\rm n} = \sqrt{(0,69+\kappa)\lambda L},\tag{9}$$

$$J_{\rm r} = \frac{0.02046\lambda L J_{\rm c.\,\kappa}}{t_{\rm fl}^2}$$
(10)

$$J_{\max} = \left[\frac{0.08184\lambda L J_{c.\kappa}}{t_{\pi}^2} + \frac{4}{t_{\pi}} \sqrt{0.02046\lambda L J_c J_{c.\kappa}} + J_c\right],\tag{11}$$

$$J_{\min} = \left[\frac{0,08184\lambda L J_{c.\kappa}}{t_{\pi}^{2}} - \frac{4}{t_{\pi}}\sqrt{0,02046\lambda L J_{c} J_{c.\kappa}} + J_{c}\right],$$
(12)

$$J_{\rm p, n} = \left[J_{\rm c} + \frac{0.08184\lambda L J_{\rm c, \kappa}}{t_{\rm n}^2} + \frac{4}{t_{\rm n}} \sqrt{0.02046\lambda L J_{\rm c} J_{\rm c, \kappa}} \cos\left(\frac{t_{\rm n}^2 - 0.69\lambda L}{\lambda L}\right) 180^\circ \right].$$
(13)

Выразим рассматриваемую интенсивность света через интегралы Френеля [4]: $C_F = \int_0^v \cos\left(\frac{1}{2}\pi v^2\right) dv$ и $S_F = \int_0^v \cos\left(\frac{1}{2}\pi v^2\right) dv$. По аналогии с [1] параметр $v = \sqrt{2\kappa'}$, где κ' – число полуволн в Δ_r . Так как $\Delta_r = \frac{t_n^2(L+l)}{2Ll}$, то $\kappa' = \frac{t_n^2(L+l)}{\lambda Ll}$. Следовательно $v = t_n \sqrt{\frac{2(L+l)}{\lambda Ll}}$, где $t_n = t'_n$. Обозначим через a_F амплитуду колебаний, приходящих в т. Q от волнового фронта, укладывающегося на полуширине u_2 . Поскольку $a_F = \sqrt{C_F^2 + S_F^2}$, интенсивность на оси пучка $J_F = (2a_F)^2 = 4(C_F^2 + S_F^2)$. Для возможности сравне-

ния с экспериментом перейдем от J_F к интенсивности J'_F , согласованной с O_c на основании выражения

$$J'_F = J_F J_c / J_{Fc}$$

где J_{Fc} – интенсивность падающего света по Френелю.

$$J_{Fc} = (2\sqrt{0.5^2 + 0.5^2})^2 = 2,$$

где 0,5 — предельное значение интегралов Френеля ($v \rightarrow \infty$).

Как показывает табл. 6, значения J'_F в основном совпадают с $J_{\mathfrak{d}}$. Рассогласование начинается и постепенно нарастает при $\varepsilon \leq 0,1^{\circ}$ (т.е. когда не действует закон $J_{\mathfrak{r}} = A/h^2$).

Таблица б

		l=100 мм	ı; L=191,	5 мм; λ=0,5	3 мкм; $J_c = 1$	15,1 от.	ед.	N. 10	1.8
Полоса	<i>t</i> ′ _п , мм	Ja	υ	S _F	C _F	JF	J' _F	J'_F/J_3	ε°
min₄	0,5163	12,32	3,913	0,4632904	0,4275043	1,59	12,0	0,974	2
max ₄	0,4823	18,46	3,655	0,5447348	0,57458	2,508	18,93	1,026	-
min ₃	0,4453	11,92	3,375	0,447948	0,4215657	1,514	11,43	0,958	-
max ₃	0,4053	19,1	3,072	0,5628183	0,582046	2,622	19,8	1,04	_
min_2	0,3583	11,18	2,716	0,4390712	0,4004868	1,413	10,67	0,954	_
max ₂	0,3063	20,55	2,321	0,571645	0,615639	2,823	21,32	1,037	_
min_1	0,2453	9,41	1,859	0,400747	0,364105	1,173	8,85	0,941	_
max ₁	0,1563	26,47	1,185	0,611258	0,724905	3,597	27,15	1,026	_
	0,1513	26,45	1,147	0,5795113	0,7449974	3,563	26,9	1,017	
	0,1413	25,5	1,071	0,5086403	0,7718233	3,418	25,8	1,01	
	0,1313	24,15	0,995	0,4332594	0,7798542	3,184	24,04	0,995	
	0,1213	22,05	0,919	0,3580786	0,769916	2,884	21,77	0,987	
	0,1113	19,55	0,844	0,28729	0,744062	2,545	19,21	0,983	0,1
	0,1013	17,25	0,768	0,223031	0,704644	2,185	16,5	0,956	_
	0,0913	14,45	0,692	0,1666198	0,653859	1,821	13,75	0,952	
	0,0813	12,3	0,616	0,1193176	0,594472	1,47	11,1	0,902	-
	0,0713	9,85	0,540	0,0812206	0,528780	1,145	8,64	0,877	
	0,0613	7,45	0,4646	0,0522128	0,4596644	0,856	6,46	0,867	
	0,0513	5,45	0,389	0,030697	0,386808	0,602	4,55	0,834	
	0,0413	3,45	0,313	0,0160286	0,3122596	0,391	2,95	0,856	-
	0,0313	2,05	0,237	0,0069663	0,2368156	0,2245	1,695	0,827	_
	0,0213	1,07	0,161	0,002185	0,1609733	0,104	0,78	0,731	
	0,0113	0,35	0,086	0,000333	0,085999	0,03	0,22	0,637	

Равенство J'_F экспериментальным значениям интенсивности в широком интервале изменения t'_n , на первый взгляд, свидетельствует об объективности представлений Френеля относительно природы дифракции света. Однако если бы это было действительно так, тогда при постоянных значениях интенсивности падающего света и параметров схемы было бы невозможно создать на оси пучка максимумы и минимумы освещенности с интенсивностями, большими и меньшими соответствующих интенсивностей, приведенных в таблицах. Исходя же из представлений Юнга, такой эффект нетрудно реализовать, например, с помощью схемы, показанной на рис. 3. В схеме на рис. 1 в качестве u_2 использована стандартная щель спектральных приборов, имеющая, как известно, острые края с углами заточки, значительно меньшими 90°. В данной схеме образована двумя прямоугольными стеклянными призмами с длиной катетных граней 10,6 мм. Чтобы исключить попадание прямых лучей на грани при не слишком больших $t_{\rm n}$, призмы развернуты относительно осп пучка на углы $i = 0,224^\circ$.

Благодаря такой форме щели, краевые лучи 2 (2'), отклоняемые в области ребра $\Gamma(E)$ в сторону границы тени, падают на грань призмы и после отражения накладываются на краевые лучи t(t'), дифрагирующие в освещенную область.

Вследствие потери полуволны при отражении лучи 1 и 2, находившиеся в противофазе в начальный момент [2], оказываются согласованными по фазе и поэтому взаимно усиливают друг друга. Причем усиление тем эффективнее, чем меньше углы $\beta = (i - \gamma)$, т.к. все большая часть лучей 2 будет достигать грани и отражаться от нее.

Т	а	б	Л	И	ц	а	7
---	---	---	---	---	---	---	---

	$l = 100$ MM; $L = 191,5$ MM; $\lambda = 0,53$ MKM												
Полоса	t _{п.р} , мм	t _{п.д} , мм	J _{ə.T}	J _c	аә.т	ac	a _{r,T}	J _{г.т}	$J_{a, \tau}/J_c$	$J_{\rm o}/J_{\rm c}$	$J_{\Gamma,T}/J_{\Gamma}$	β°	
max ₁	0,155	0,160	32,17	16	5,672	4	0,836	0,7	2,01	1,748	1,684	0,135	
min_1	0,243	0,247	6,47	_»_	2,544	4	0,728	0,53	0,404	0,629	3.1	0.08	
max ₂	0,306	0,308	26,37	>	5,135	4	0,568	0,322	1,648	1,351	3.07	0.049	
$-min_2$	0,3585	0,361	7,97	>	2,823	4	0,588	0,346	0,498	0,748	4,74	0.019	
max ₃	0,404	0,405	24,17	_ > _	4,916	4	0,458	0,21	1,511	1,252	3,68	-0.008	

В результате возросшей интенсивности краевых лучей, интерферирующих с осевыми лучами 3, интенсивность максимумов становится больше, а минимумов — меньше в сравнении с ее значениями в экспериментах по первой схеме, что видно по данным табл. 7, где $J_{2,T}$, $J_{r,T}$ соответственно экспериментальная интенсивность света на оси пучка и результирующая интенсивность краевых лучей в случае u_{2} , образованной толстыми экранами (призмами); $a_{_{3,\mathrm{T}}} = \sqrt{J_{_{3,\mathrm{T}}}}; a_{_{\Gamma,\mathrm{T}}} = (a_{_{3,\mathrm{T}}} - a_{\mathrm{c}})/2; J_{_{\Gamma,\mathrm{T}}} = a_{_{\Gamma,\mathrm{T}}}^2; J_{_{\Gamma}}$ скорректирована применительно к J = 16 от.ед. Колебания интенсивности были бы более значительными, если бы не происходило частичное преломление лучей 2 (2') в призмы [5]. Судя по характеру изменения J_{г.т}/J_г, рассмотренный эффект значителен лишь при малых β. Причиной этого является распространение основного потока дифрагированных лучей под небольшими углами относительно первоначального направления, исключающее их падение на грань призмы и последующее отражение в тех случаях, когда р превышает величину этих углов.

Как известно, объяснение зависимости освещенности на оси пучка от размеров и положения ограничивающего его отверстия на основании представлений Френеля приводит к утверждению о непрямолинейном распространении света [6]. В связи с установлением действительной причины явления это утверждение становится неубедительным.

1. Терентьев Ю.И. //Оптика атмосферы. 1990. Т. З. № 9. С. 965-975.

2. Терентьев Ю.И. //Оптика атмосферы. 1989. Т. 2. № 11. С. 1141—1147. 3. Терентьев Ю.И. //Оптика атмосферы. 1989. Т. 2. № 11. С. 1147—1153.

- 4. Артамонов Г.Т. и др. Таблицы интегралов Френеля / Отв. ред. В.А. Диткин. М.: Изд. АН СССР. 1953.
- 5. Терентьев Ю.И. //Изв. вузов СССР. Сер. Физика. 1987. № 12. С. 55-58.

6. Фриш С.Э., Тиморева А.В. Курс общей физики. М.: ГИТ-ТЛ, 1951. Т. 3. 796 с.

Институт оптики атмосферы СО АН СССР, Томск

Поступила в редакцию 24 января 1991 г.

Yu.I. Terentjev. Character of the Dependence of the Light Intensity on the Beam Axis on the Width of Reflecting Slit Based on the Young Principle.

An explanation is suggested in the paper of the light intensity on the axis of a beam as a function of width of a slit forming it. The explanation is based on the analysis of interference between the edge and axial rays.

Expressions for the halfwidth of limiting slit at maxima and minima of the beam intensity at its axis are ob-

tained. These expressions well agree with the experimental data. The conditions are considered under which an essential increase of the intensity variation are observed on the beam axis caused by the change of the beam limiting slit width, other experimental parameters being constant.