В.И. Стариков

Аналитическое представление для коэффициентов уширения линий поглощения озона давлением кислорода, воздуха и собственным давлением

Томский университет систем управления и радиоэлектроники, Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 10.01.2006 г.

Определены параметры аналитической модели для коэффициентов уширения у линий поглощения озона давлением кислорода, воздуха и собственным давлением. Модель позволяет проводить вычисления у без использования полуклассических методов в широком интервале вращательных квантовых чисел и температур, представляющих атмосферный интерес.

Введение

Исследование колебательно-вращательных (КВ) спектров молекулы озона имеет большую историю благодаря особой роли озона в атмосфере. Список работ по экспериментальным и теоретическим исследованиям спектров озона содержит более сотни публикаций. Обзор литературы по коэффициентам уширения у линий озона можно найти в [1].

Коэффициенты ү крайне важны для анализа распределения озона по высоте в приземной атмосфере. При этом знание коэффициентов уширения γ_{N_2} и γ_{O_2} основными атмосферными газами N_2 и O_2 дает фактическую возможность определять коэффициенты уширения воздухом по формуле

$$\gamma_{\text{возд}} = 0,79\gamma_{N_2} + 0,21\gamma_{O_2}.$$
 (1)

Интерес к исследованию коэффициентов уширения вращательных линий озона связан с тем фактом, что в диапазоне 10-100 см⁻¹ около 80% эмиссионных линий верхней атмосферы Земли обусловлены именно ¹⁶О₃ и его изотопомерами [2].

Основные данные по коэффициентам уширения вращательных линий озона (диапазон 50–90 см⁻¹) в случае уширения собственным давлением, давлением воздуха и кислорода представлены в [2], где значения γ определены для 101 линии с 7 $\leq J \leq$ 34, $3 \leq K_a \leq$ 11 и температур T = 296, 252 и 212 К.

Коэффициенты уширения у собственным давлением, давлением воздуха, азота и кислорода для колебательных полос v₂ и v₁ + v₃ и вращательной полосы определены в [3–5]. Для полосы v₂ (630–800 см⁻¹) значения у определены для 350 линий (0 ≤ J ≤ 45, 1 ≤ K_a ≤ 12) при температурах от +29 до -63 °C. Для полосы v₁ + v₃ измерения проведены для 35 линий при T = 227 и 186 К.

Для большинства исследованных в [2-5] линий определен температурный показатель n через соотношение

$$\gamma(T) = \gamma(T_0) (T_0 / T)^n, \qquad (2)$$

в котором T_0 — опорная температура (обычно $T_0 = 296$ К). Для этой цели использовались одновременно несколько спектров, отснятых при различных температурах. При анализе этих спектров были получены усредненные значения для $\gamma_{cp}(T_0)$ и n_{cp} . В частности, для вращательной полосы согласно [2] $n_{cp}(O_3 - O_3) = 0.67$, $n_{cp}(O_3 - \text{воздух}) = 0.73$ и $n_{cp}(O_3 - O_2) = 0.67$. Для полосы $v_2 n_{cp}(O_3 - \text{воздух}) = 0.53$ и для $v_1 n_{cp}(O_3 - \text{воздух}) = 0.67$ [3].

В обзоре [1] показано, что точность определения коэффициентов у должна составлять около 5%, однако согласно [2] реально эта точность составляет около 10%.

Расчеты коэффициентов уширения γ для молекулы озона, выполненные по полуклассическим методам, представлены в базе спектроскопической информации HITRAN [6]. Несмотря на то что многие данные по коэффициентам уширения γ КВ-линий озона доступны, но их недостаточно, так как потребность в этих коэффициентах намного шире.

Цель настоящей работы заключается в том, чтобы на основании имеющихся экспериментальных данных определить параметры аналитической модели для коэффициентов уширения КВ-линий поглощения молекулы озона. Эта модель использовалась раннее [7, 8] для описания коэффициентов ү молекулы водяного пара для случая самоуширения и уширения атомами инертных газов. Аналитическая модель позволяет рассчитывать значения ү для широкого интервала вращательных квантовых чисел и температур, минуя полуклассические методы расчета, для которых необходимо знание КВ-волновых функций, энергий, межмолекулярного потенциала и других характеристик взаимодействующих молекул.

Моделирование коэффициентов уширения γ для линий O₃ давлением кислорода, воздуха и собственным давлением

Экспериментальные значения для коэффициентов уширения у молекулы О₃ в случае уширения этими газами были использованы для определения параметров аналитической модели

$$\gamma(K_i, K_f) = \gamma(sur) = x_1 + x_2 \operatorname{ch}[x_5(K_i - K_f)(K_i + K_f)] / (\operatorname{ch}[x_3(K_i - x_4)] \operatorname{ch}[x_3(K_f - x_4)]), \quad (3)$$

которая использовалась раннее в [7, 8] для моделирования коэффициентов γ в системах H₂O-H₂O и H₂O-A (A – атомы инертных газов). В этой формуле $K_i \equiv K_a^i$ и $K_f \equiv K_a^f$ есть вращательные квантовые числа начального и конечного состояний (зависимостью от квантовых чисел K_c^i и K_c^f пренебрегается), а x_k есть зависящие от вращательных квантовых чисел J_i , J_f параметры. Зависимость параметров $x_k = x_k (J_i, J_f)$ выбирается в полиномиальной форме

$$x_k = x_{k\,0} + x_{k1}(J_i + J_f) + x_{k2}(J_i + J_f)^2.$$
(4)

Параметры x_{k0} , x_{k1} и x_{k2} определяются методом наименьших квадратов (МНК) из подгонки выражений (3) и (4) к известным начениям $\gamma_i(u)$ для коэффициентов уширения. Для характеристики качества подгонки, как обычно, выбирается величина

$$\sigma = \left\{ \sum_{i}^{N} \left[\gamma_{i}(u) - \gamma_{i}(sur) \right]^{2} / (N - L) \right\}^{1/2}, \quad (5)$$

характеризующая среднеквадратическое отклонение (N — число используемых данных; L — число параметров модели). Формула (3) определяет для фиксированных вращательных квантовых чисел J_i и J_f двумерную поверхность $\gamma(sur)$ ($\gamma(surface)$). Сечения этой поверхности определяют коэффициенты уширения γ для линии [J_i , K_a^i , K_c^i] \rightarrow [J_f , K_a^f , K_c^f]. Обычно температурную зависимость коэффици-

ентов уширения γ определяют через соотношение (2), т.е. указывают значения *n* для каждой линии. В [7, 8] использован другой подход к описанию температурной зависимости коэффициентов уширения, а именно: зависимость γ от температуры определяется через температурную зависимость поверхности $\gamma(sur)$ (3) посредством введения температурной зависимости параметров, определяющих эту поверхность. Зависимость параметров из (3) от температуры вводится по аналогии с (2) по формуле

$$x_k(T) = x_k(T_0)(T / T_0)^{n_k},$$
(6)

где $x_k(T_0)$ определяется параметрами из (4) для опорной температуры $T_0 = 296$ К.

2. Определение параметров аналитической модели для $T_0 = 296$ К

Нами получены несколько наборов параметров для аналитической модели $\gamma(sur)$ (3), которые соответствуют различным наборам экспериментальных данных.

А. Вращательные переходы. Для определения параметров $\gamma(sur)$ (3) использовались экспериментальные данные из [2], т.е. значения $\gamma(T_0 = 296 \text{ K})$ для 93 линий с максимальными значениями $J_i = 35$ и $K_a^i = 12$ (для всех линий $\Delta K_a = |K_a^i - K_a^f| = 1$). Параметры модели $\gamma(sur)$ приведены в табл. 1.

Б. Полоса v_2 . В качестве $\gamma_i(u)$ в формуле (5) использовались экспериментальные данные $\gamma(T_0 = 296 \text{ K})$ из [3]. Параметры модели для этой полосы также представлены в табл. 1.

Качество восстановления экспериментальных данных для двух полос показано в табл. 2, где представлена статистика расчетов коэффициентов у с помощью модели ү(sur) (3). Согласно табл. 2, 90% всех данных для ү, полученных для вращательной полосы, восстанавливается с точностью 5% и фактически все данные восстанавливаются с точностью 10%, что соответствует экспериментальной точности определения этих параметров. Для восстановления у требуется не более 5 параметров, а в случае уширения собственным давлением - только три. Это говорит о том, модель $\gamma(sur)$ (3) адекватно описывает экспериментальные данные, определенные для вращательной полосы. Аналогичные результаты получены и для полосы v₂. Несколько хуже, возможно, данные восстанавливаются в случае уширения собственным давлением. Тем не менее и в этом случае около 92% экспериментальных значений для у восстанавливается с точностью 10%.

3. Определение температурной зависимости

Температурная зависимость $\gamma(sur)$ (3) определялась через соотношения (4), (6), при этом в качестве входных значений $\gamma_i(u)$ в формуле (5) использовались следующие данные.

Система O_3-O_2 . Для этой системы использовались значения $\gamma(T_0 = 296 \text{ K})$ и температурные показатели *n* для 93 вращательных линий из [2]. По формуле (2) были рассчитаны значения γ для температур T = 252 и 212 К, т.е. для тех температур, при которых и были сняты спектры поглощения. К этим данным были добавлены значения $\gamma(T)$, определенные в [4] для 35 линий полосы $v_1 + v_3$ при T = 227 и 186 К. Полученный набор коэффициентов $\gamma(T)$ при различных T и был использован для определения параметров модели $\gamma(sur)$ (3). Параметры представлены в табл. 3.

Отметим, что для описания температурной зависимости использовался только один параметр n_2 (остальные являются статистически не определяемыми).

Таблица 1

Параметры $x_{km}(T_0 = 296 \text{ K})$ из формул (3), (4) для коэффициентов уширения КВ-переходов О ₃ в случае уширения давлением воздуха, кислорода и собственным давлением							
$O_3 - O_3$		O ₃ -1	$O_3 - O_2$				
Вращательная	Полоса уз	Вращательная	Полоса уз	Вращательн			

Hana-	\$ 5	÷	• 5	= J = Z	
метр	Вращательная полоса	Полоса v2	Вращательная полоса	Полоса v ₂	Вращательная полоса
x_{10}		$0,0816 \pm 0,002$	$0,0709 \pm 0,009$	$0,0818 \pm 0,0093$	$0,0717 \pm 0,007$
x_{20}	$0,1084 \pm 0,0017$	$0,0290 \pm 0,002$	$0,0212 \pm 0,0260$	$0,0117 \pm 0,0012$	$0,0154 \pm 0,029$
\mathbf{X}_{21}	$-(0,1964 \pm 0,029) \cdot 10^{-3}$	$-(0,2117 \pm 0,021) \cdot 10^{-3}$	$-(0,389 \pm 0,078) \cdot 10^{-3}$	$-(0,4061\pm0,021)\cdot10^{-3}$	$-(0,444 \pm 0,051) \cdot 10^{-3}$
x_{30}	$0,0381 \pm 0,017$	$0,1774 \pm 0,024$	$0,1992 \pm 0,0094$	$0,0623 \pm 0,0094$	$0,2182 \pm 0,024$
x_{31}					
x_{40}		$2,2925 \pm 0,22$			
x_{41}			$0,2511 \pm 0,0176$	$-0,1183 \pm 0,0085$	$0,1366 \pm 0,0085$
N	93	369	93	345	93
L	3	5	5	5	5
ΔK_a	1	1	1	1	1
σ	$3,0\cdot10^{-4}$	$2,8\cdot10^{-4}$	$2,9\cdot 10^{-4}$	$1,4\cdot 10^{-4}$	$2,4\cdot10^{-4}$

Примечание. Параметры получены для линий с $\Delta K_a = 1$ и только для этих линий могут быть использованы в расчетах. Параметры x_{10} , x_{20} и x_{21} имеют размерность см⁻¹ · атм⁻¹, остальные безразмерны.

Таблица 2

Статистика расчета коэффициентов у для КВ-переходов О3 при T0 = 296 К

	$O_3 - O_3$			О ₃ — воздух			$O_3 - O_2$			
۸ %	Врап	цательная	П		Врап	цательная	По		Bpa	щательная
Δ, 70	П	олоса	110	$0.10ca v_2$	П	олоса	$110,10Ca V_2$		полоса	
	N_L	$N_L/N, \%$	N_L	$N_L/N, \%$	N_L	$N_L/N, \%$	N_L	$N_L/N, \%$	N_L	$N_L/N, \%$
0-5	84	90,3	252	68,3	82	88,2	305	88,7	83	89,2
5-10	8	8,6	85	23,6	9	9,7	35	10,1	8	8,6
10-20	1	1,1	31	8,4	2	2,1	4	1,2	2	2,2
> 20	0	0	1	0,3	0	0	0	0	0	0

Примечание. $\Delta = |\gamma(3\kappa cn.) - \gamma(sur)|/\gamma(3\kappa cn.), N_L$ – количество линий, для которых получено данное отклонение Δ .

Таблица З

Параметры $x_{km}(T_0 = 296 \text{ K})$ и *n* из формул (3), (4), (6), определяющих температурную зависимость коэффициентов уширения КВ-переходов О₃ в случае уширения давлением воздуха, кислорода и собственным давлением

	=		
Параметр	$O_3 - O_3$	О ₃ — воздух	$O_3 - O_2$
x_{20}	$0,1098 \pm 0,0007$	$(0,9178 \pm 0,0023) \cdot 10^{-1}$	$(0,8303 \pm 0,0072) \cdot 10^{-1}$
x_{21}	$-(0,1998\pm0,0176)\cdot10^{-3}$	$-(0,2788 \pm 0,0045) \cdot 10^{-3}$	$-(0,3311 \pm 0,0166) \cdot 10^{-3}$
x_{30}	$-(0,4320\pm0,0183)\cdot10^{-1}$	$(0,6528 \pm 0,0178) \cdot 10^{-1}$	$(0,8456 \pm 0,0623) \cdot 10^{-1}$
x_{31}	$(0,6784\pm0,4796)\cdot10^{-4}$	$-(0,831 \pm 0,033) \cdot 10^{-3}$	$-(0, 1267 \pm 0, 0145) \cdot 10^{-2}$
x_{41}	0,0	$0,2258 \pm 0,0061$	$0,2480 \pm 0,0066$
n_2	$-0,6474 \pm 0,0157$	$-0,5409 \pm 0,0067$	$-0,6864 \pm 0,0121$
n_4	0,00	$0,5411 \pm 0,1110$	0,0
N	648	1140	385
L	6	7	7
ΔK_a	≤ 1	≤ 1	≤ 1
σ	$1,8\cdot 10^{-4}$	$7,6 \cdot 10^{-5}$	$1,4\cdot 10^{-4}$

Качество восстановления используемых данных показано на рис. 1 и 2. Все данные упорядочены по возрастанию экспериментальных значений для коэффициентов уширения, которые помечены темными символами. Светлые символы соответствуют вычисленным значениям коэффициентов γ . Рис. 1 и 2 демонстрируют высокое качество восстановления γ , особенно для полосы $v_1 + v_3$.

Система О₃—О₃. Для этой системы использовались значения $\gamma(T_0 = 296 \text{ K})$ для вращательной полосы из [2] и для полосы v₂ из [3]. С помощью температурных показателей *n* для 93 вращательных

линий были определены по формуле (2) значения $\gamma(T)$ для T = 252 и 212 К. Из полученного набора $\gamma_i(u)$ и были определены параметры модели $\gamma(sur)$ (3), которые приведены в табл. 3, а на рис. 3 показано качество восстановления используемых коэффициентов уширения. За исключением нескольких линий коэффициенты γ восстанавливаются с точностью до 10%.

Система О₃ — воздух. С помощью значений $\gamma(T_0 = 296 \text{ K})$ и *n* из [2] были определены значения $\gamma(T)$ для T = 252 и 212 К для вращательных переходов и с помощью значений $\gamma(T_0 = 296 \text{ K})$ и *n* из [3]

Рис. 1. Экспериментальные [2] и вычисленные по аналитической модели γ(sur) (3) коэффициенты уширения КВлиний вращательной полосы молекулы озона для различных температур в случае уширения кислородом (использовались параметры из табл. 3)

Рис. 2. Экспериментальные [4] и вычисленные по аналитической модели ү(sur) (3) коэффициенты уширения КВлиний для полосы v₁ + v₃ молекулы озона в случае уширения кислородом

были определены значения $\gamma(T)$ для T = 250 и 210 К для полосы v₂. К ним были добавлены значения $\gamma(T)$ для T = 227 и 186 К, вычисленные по формуле (1) с $\gamma(T_0 = 296$ К) и *n* из [4] для систем O₃—N₂ и O₃—O₂ полосы v₁ + v₃. Анализ результатов подгонки модели $\gamma(sur)$ (3) к этим значениям показал, что эти значения не совместны в том смысле, что данные для вращательной полосы при T = 212 К плохо описываются совместно с данными при T = 210 К для полосы v₂. Во введении отмечалось, что среднее значение температурного показателя $n_{\rm cp}$ (O₃ — воздух) равно 0,73 для вращательных переходов и $n_{\rm cp}$ (O₃ — воздух)

равно 0,53 для полосы v_2 , т.е. есть различие. В окончательном варианте использовались данные для полос v_2 и $v_1 + v_3$. Полученные параметры модели $\gamma(sur)$ (3) приведены в табл. 3.

Рис. 3. Экспериментальные [2] и вычисленные по аналитической модели γ(sur) (3) коэффициенты уширения КВлиний для вращательной полосы молекулы озона в случае уширения собственным давлением

Качество восстановления используемых данных показано на рис. 4 и 5 и является вполне удовлетворительным.

Рис. 4. Экспериментальные [3] и вычисленные по аналитической модели $\gamma(sur)$ (3) коэффициенты уширения КВлиний для полосы v₂ молекулы озона в случае уширения воздухом

4. Обсуждение

Основной результат работы заключен в табл. 1 и 3. Приведенные в них параметры аналитической модели $\gamma(sur)$ (3) позволяют рассчитывать

Аналитическое представление для коэффициентов уширения линий поглощения озона давлением кислорода... 711

Рис. 5. Экспериментальные [4] и вычисленные по аналитической модели γ(sur) (3) коэффициенты уширения КВ-линий для полосы ν₁ + ν₃ молекулы озона в случае уширения воздухом

коэффициенты уширения γ КВ-линий поглощения озона в случае уширения кислородом, воздухом и в случае самоуширения для вращательных квантовых чисел $J \leq 45$, $K_a \leq 12$ и температур от +29 до – 63 °C. Практика использования модели $\gamma(sur)$ (3) для водяного пара [7, 8] показывает, что параметры модели можно использовать для расчета γ для большего интервала вращательных квантовых чисел и температур. Ограничения в использовании модели связаны с ограничениями по $\Delta K_a = |K_a^i - K_a^f| = 0$; 1 (только для этих переходов использовались в обратной задаче экспериментальные значения для коэффициентов γ , поэтому параметр x_5 в модели оказался неопределенным). Точность восстановления экспериментальных данных, согласно табл. 2 и рис. 1–5, для более 90% используемых данных составляет около 10% и является вполне удовлетворительной. Максимальные ошибки приходятся на линии с минимальными и максимальными значениями квантового числа $K_a = 0$ или $K_a = J$.

- Gamache R.R., Arie E., Boursier C., Hartmann J.M. Pressure-broadening and pressure-shifting of spectral lines of ozone // Spectrochim. acta. A. 1998. V. 54. P. 35–63.
- Larsen R.W., Nicolaisen F.M., Sorensen G.O. Determination of self-, air,- and oxygen-broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependence // J. Mol. Spectrosc. 2001. V. 210. P. 259–270.
- 3. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Air-broadening and shift coefficients of O_3 lines in the v_2 band and their temperature dependence // J. Mol. Spectrosc. 1997. V. 182. P. 221–238.
- Barbe A., Regalia L., Plateaux J.J., Von Der Heyden P., Thomas X. Temperature dependence of N₂ and O₂ broadening coefficients of ozone // J. Mol. Spectrosc. 1996. V. 180. P. 175–182.
- Drouin B.J. Fischer J., Gamache R.R. Temperature dependent pressure induced lineshape of O₃ rotational transitions in Air // J. Quant. Spectrosc. and Radiat. Transfer. 2004. V. 83. P. 63–81.
- Rothhman L.S., Gamache R.B., Tipping R.H., Rinsland C.P., Smith N.H., Benner D.C., Devi V.M., Flaud J.M., Camy-Peyret C., Perring A., Goldman A., Massie S.T., Brown L.R., Toth R.A. The HITRAN molecular database: Editions of 1991 and 1992 // J. Quant. Spectrosc. and Radiat. Transfer. 1993. V. 48. P. 469.
- 7. Стариков В.И., Протасевич А.Е. Аналитическое представление для коэффициентов самоуширения водяного пара // Оптика и спектроскопия. 2005. Т. 98. С. 368–373.
- Протасевич А.Е., Стариков В.И. Расчет и моделирование уширений линий поглощения водяного пара атомами инертных газов // Оптика и спектроскопия. 2005. Т. 98. С. 578–585.

V.I. Starikov. Analytical representation for coefficients γ of self-, oxygen-, and air-pressure broadened ozone absorption lines.

Parameters of the analytical model for coefficients γ of self-, oxygen-, and air-pressure broadened ozone absorption lines are determined. The model allows calculation of γ without involving semi-classical methods in a broad range of rotational quantum numbers and temperatures being of interest for atmosphere.