ОПТИКА СЛУЧАЙНО-НЕОДНОРОДНЫХ СРЕД

УДК 534.222

И.П. Лукин, В.В. Носов

Погрешность поляризационного целеуказания оптическим излучением в турбулентной атмосфере

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 17.08.2004 г.

Исследуется погрешность, вносимая атмосферной турбулентностью в работу оптической системы целеуказания по информационному полю поляризации оптического излучения. Теоретически рассматриваются статистические характеристики сигнала целеуказания: среднее значение и дисперсия. На основе полученных результатов оценивается дальность действия данной системы целеуказания.

Системы целеуказания и наведения, работающие в атмосфере, подвержены влиянию ряда искажающих факторов, в частности атмосферной турбулентности. Вопрос о возмущающем воздействии атмосферы на точность оптико-электронных систем целеуказания в общем случае достаточно сложен. Это связано с тем, что на работу систем различных типов (использующих свой тип информации, заключенной в приходящем на приемник излучении) оказывают влияние разные флуктуационные эффекты. Например, для дифференциальных амплитудных методов измерения с четырехплощадочным приемником основное воздействие на точность измерения оказывают флуктуации интенсивности в плоскости анализатора изображения [1, 2]. В амплитудных датчиках с позиционно-чувствительным методом выделения информации о положении излучающего объекта [1, 2] основную погрешность в измерение угловой координаты объекта вносят флуктуации угла прихода волны на приемник. Фазовые угломерные датчики наиболее чувствительны к искажениям волнового фронта приходящего излучения. В данной работе проводится расчет погрешности, вносимой атмосферной турбулентностью в работу оптической системы целеуказания, задающей направление путем формирования в пространстве информационного поля поляризации оптического излучения.

Оптическое поле на выходе из лазера $E_0(0, \mathbf{\rho})$ зададим в виде одномодового гауссовского пучка

$$E_0(0,\mathbf{\rho}) = E_0(\mathbf{\rho}) = E_0 \exp\left[-\frac{\rho^2}{2 a_0^2} - \frac{i k}{2 R_0} \rho^2\right], \quad (1)$$

где E_0 – начальная амплитуда оптического поля на оптической оси лазера; a_0 – начальное значение радиуса лазерного пучка; R_0 – начальное значение радиуса кривизны волнового фронта в центре излучающей апертуры; $k = 2\pi/\lambda$, λ – длина волны оптического излучения в вакууме; $\mathbf{\rho} = \{y, z\}$. Пусть линейно поляризованный световой пучок проходит через оптический клин, ориентированный вдоль оси *ОУ*. На выходе из клина оптическое поле можно будет записать в виде

$$E(0,\mathbf{\rho}) = E_0(0,\mathbf{\rho}) \exp[i\phi(y)], \qquad (2)$$

где $\phi(y)$ – набег фазы оптического поля в клине. Если оптический клин изготовлен из двоякопреломляющей кристаллической пластинки, вырезанной параллельно оптической оси кристалла (ось *OY*), и оптическая волна падает в направлении, перпендикулярном к поверхности кристалла, то сквозь кристалл по одному направлению с различной скоростью распространяются два луча (обыкновенный и необыкновенный), электрические колебания в которых происходят во взаимно перпендикулярных плоскостях. Разность фаз, возникающая между этими лучами после прохождения через оптический клин толщиной d(y):

$$\delta(y) = \phi_o(y) - \phi_e(y) = -k(n_o - n_e)d(y), \qquad (3)$$

где n_o и n_e – соответственно показатели преломления кристалла для обыкновенного и необыкновенного лучей. Амплитуды колебаний электрических векторов \mathbf{E}_o и \mathbf{E}_e обыкновенного и необыкновенного лучей соответственно численно равны:

$$A = E_0 \cos(\theta); \quad B = E_0 \sin(\theta),$$

где θ – угол между направлением колебаний вектора **E** в падающем поляризованном свете и направлением оптической оси кристалла (оси *OY*). Пусть $\theta = 45^{\circ}$, тогда $A = B = E_0/\sqrt{2}$. Вышедшая из оптического клина волна в общем случае будет эллиптически поляризованной:

$$\begin{cases} E_y(0,\mathbf{\rho}) = \frac{E_0}{\sqrt{2}} \exp\left[-\frac{\rho^2}{2a_0^2} - \frac{ik}{2R_0}\rho^2 + ikn_e d(y)\right], \\ E_z(0,\mathbf{\rho}) = \frac{E_0}{\sqrt{2}} \exp\left[-\frac{\rho^2}{2a_0^2} - \frac{ik}{2R_0}\rho^2 + ikn_o d(y)\right], \end{cases}$$
(4)

где E_y – напряженность электрического поля необыкновенного луча (электрический вектор необыкновенного луча направлен вдоль оси *OY*: $\mathbf{E}_e = \{0, E_y, 0\}$);

Лукин И.П., Носов В.В.

 E_z – напряженность электрического поля обыкновенного луча (электрический вектор обыкновенного луча перпендикулярен к электрическому вектору необыкновенного луча: $E_o = \{0, 0, E_z\}$).

Для определенности будем считать, что

$$(n_o - n_e) d(y) = \begin{cases} 0 & \text{при } y = -l/2; \\ \lambda/4 & \text{при } y = 0; \\ \lambda/2 & \text{при } y = l/2, \end{cases}$$

где l – протяженность оптического клина в направлении оси OY, т.е.

$$(n_o - n_e) d(y) = \frac{\lambda}{4} + \frac{\lambda}{2l} y$$

при $y \in [-l/2, l/2]$. Таким образом, на оптической оси системы целеуказания (ось OX, y = 0) оптическая волна будет иметь круговую поляризацию, на краях информационного поля $y = \pm l/2$ – линейную, а при промежуточных значениях y – эллиптическую.

Вышедшие из оптического клина волны (4), из-за наличия разного первоначального наклона волнового фронта, при распространении в атмосфере будут идти по различным направлениям, все больше расходясь в пространстве, что может привести к нарушению структуры информационного поля в месте приема излучения. Чтобы избежать этого, необходимо пропустить излучение через систему формирования оптических сигналов, которая вносит смещение оптических пучков с различным направлением вектора поляризации друг относительно друга. Смещение должно быть таким, чтобы разнесенные в пространстве необыкновенный и обыкновенный лучи в точке наблюдения сходились (или были близки к схождению). При этих условиях оптическое поле на выходе из системы формирования оптического сигнала можно будет записать следующим образом:

$$\begin{aligned} E_{y}(0,\mathbf{\rho}) &= \frac{E_{0}}{\sqrt{2}} \exp\left[-\frac{(y-y_{e})^{2}}{2a_{0}^{2}} - \frac{ik}{2R_{0}}(y-y_{e})^{2} - \frac{ik^{2}}{2a_{0}^{2}} - \frac{ik}{2R_{0}}z^{2} + ikn_{e}d(y)\right], \\ E_{z}(0,\mathbf{\rho}) &= \frac{E_{0}}{\sqrt{2}} \exp\left[-\frac{(y-y_{o})^{2}}{2a_{0}^{2}} - \frac{ik}{2R_{0}}(y-y_{o})^{2} - \frac{-\frac{z^{2}}{2a_{0}^{2}} - \frac{ik}{2R_{0}}z^{2} + ikn_{o}d(y)\right], \end{aligned}$$
(5)

где *y_e*, *y_o* – положения центров тяжести пучков излучения необыкновенного и обыкновенного лучей на выходе из оптической системы формирования сигнала.

Рассмотрим поле оптического излучения на расстоянии *x* в турбулентной атмосфере от системы формирования оптического сигнала. Согласно [3] его можно записать в виде

$$\begin{cases} E_y(x,\mathbf{\rho}) = \frac{1}{\sqrt{2}} E_e(x,\mathbf{\rho}) \exp[ikx + ikn_e d(y)], \\ E_z(x,\mathbf{\rho}) = \frac{1}{\sqrt{2}} E_o(x,\mathbf{\rho}) \exp[ikx + ikn_o d(y)], \end{cases}$$
(6)

где

$$E_{\ell}(x, \mathbf{\rho}) = E_{0\ell}(x, \mathbf{\rho}) \exp[\chi_{\ell}(x, \mathbf{\rho}) + iS_{\ell}(x, \mathbf{\rho})];$$

 $\ell = o$ или e .

Здесь $E_{0\ell}(x, \mathbf{\rho})$ — поле в точке $\{x, \mathbf{\rho}\}$, создаваемое источником через однородную среду, а $\chi_{\ell}(x, \mathbf{\rho})$ и $S_{\ell}(x, \mathbf{\rho})$ — соответственно флуктуации логарифма амплитуды и фазы оптической волны.

Оптическое излучение будем регистрировать двумя точечными квадратичными приемниками, реагирующими на взаимно перпендикулярные значения поляризации. В общем случае направления поляризации приемников не совпадают с направлениями векторов поляризации оптической волны. С учетом расположения приемников в разных точках $\rho_1 = \{y_1, z_1\}$ и $\rho_2 = \{y_2, z_2\}$ можно записать следующие выражения для фототоков этих приемников [4]:

$$\begin{cases} \iota_{1} = \eta_{1} E_{\perp}(x, \rho_{1}) E_{\perp}^{*}(x, \rho_{1}), \\ \iota_{2} = \eta_{2} E_{\perp}(x, \rho_{2}) E_{\perp}^{*}(x, \rho_{2}), \end{cases}$$
(7)

где η₁, η₂ – квантовые эффективности приемников;

$$E_{\perp}(x, \mathbf{\rho}_1) = E_y(x, \mathbf{\rho}_1) \cos(\psi) - E_z(x, \mathbf{\rho}_1) \sin(\psi);$$

$$E_{\perp}(x, \mathbf{\rho}_2) = E_y(x, \mathbf{\rho}_2) \sin(\psi) + E_z(x, \mathbf{\rho}_2) \cos(\psi);$$

 ψ – угол между векторами поляризации приемников (E_{\perp}, E_{\square}) и оптической волны (E_{y}, E_{z}).

Значение сигнала целеуказания і находится как отношение разности фототоков двух приемников к их сумме:

$$\iota = \frac{\iota_2 - \iota_1}{\iota_1 + \iota_2}.$$
 (8)

Поскольку приемники можно расположить вплотную друг к другу $\mathbf{\rho}_1 \rightarrow \mathbf{\rho}_2$, то $d(y_1) \cong d(y_2)$, $S_o(x, \mathbf{\rho}_1) - S_o(x, \mathbf{\rho}_2) \rightarrow 0$ и $S_e(x, \mathbf{\rho}_1) - S_e(x, \mathbf{\rho}_2) \rightarrow 0$. С учетом малости разности $|y_e - y_o|$ для области слабых флуктуаций интенсивности парциальной оптической волны [3] получим:

$$\iota \cong \frac{1}{4} \{ \exp\{i[S_o(x, \mathbf{\rho}_1) - S_e(x, \mathbf{\rho}_1)] + ik(n_o - n_e) d(y_1)\} + \\ + \exp\{-i[S_o(x, \mathbf{\rho}_1) - S_e(x, \mathbf{\rho}_1)] - ik(n_o - n_e) d(y_1)\} + \\ + \exp\{i[S_o(x, \mathbf{\rho}_2) - S_e(x, \mathbf{\rho}_2)] + ik(n_o - n_e) d(y_2)\} + \\ + \exp\{-i[S_o(x, \mathbf{\rho}_2) - S_e(x, \mathbf{\rho}_2)] - ik(n_o - n_e) d(y_2)\} \} \sin(2\psi).$$
(9)

Так как флуктуации фазы оптической волны, распространяющейся в турбулентной атмосфере, распределены по нормальному закону со средним, близким к нулю [3, 5], то среднее значение сигнала целеуказания ι (9) можно записать следующим образом:

$$\langle \iota \rangle \cong \exp\left\{-\frac{1}{2}\left\langle \left[S_o(x, \mathbf{\rho}) - S_e(x, \mathbf{\rho})\right]^2\right\rangle \right\} \times \\ \times \cos[k\left(n_o - n_e\right)d(y)]\sin(2\psi), \tag{10}$$

Погрешность поляризационного целеуказания оптическим излучением в турбулентной атмосфере 217

где $\langle [S_o(x, \mathbf{\rho}) - S_e(x, \mathbf{\rho})]^2 \rangle = D_S(y_o, y_e)$ – структурная функция флуктуаций фазы двух гауссовских пучков с начальными условиями (5). Расчет структурной функции, проведенный методом плавных возмущений [3, 5], показывает, что при $l_0 < |y_o - y_e| < L_0$

$$D_{S}(y_{o}, y_{e}) \cong 2 \alpha(\mu, \Omega_{0}) \left(\frac{|y_{o} - y_{e}|}{\rho_{0}} \right)^{5/3}, \qquad (11)$$
$$\alpha(\mu, \Omega_{0}) =$$

$$=\frac{3}{8}\frac{\left|-\mu(1-\mu)+\Omega_{0}^{-2}\right|^{5/3}+\left|\operatorname{Re}\left\{\left[-\mu(1-\mu)+\Omega_{0}^{-2}+i\Omega_{0}^{-1}\right]^{5/3}\right\}\right|}{\left[(1-\mu)^{2}+\Omega_{0}^{-2}\right]^{5/3}},$$

где l_0 , L_0 — соответственно внутренний и внешний масштабы атмосферной турбулентности [3, 5]; $\mu = x/R_0$ — параметр фокусировки пучка; $\Omega_0 = ka_0^2/x$ — число Френеля передающей апертуры;

$$\rho_0 = \left(2^{-5/3} \frac{18}{5} 0,033 \pi^2 \Gamma\left(\frac{7}{6}\right) \right) \left(\Gamma\left(\frac{11}{6}\right) C_{\epsilon}^2 k^2 x\right)^{-3/5}$$

— радиус когерентности плоской оптической волны в месте приема излучения [3, 5]; C_{ε}^2 — структурный параметр флуктуаций диэлектрической проницаемости турбулентной атмосферы [3, 5].

Для излучения в инфракрасном диапазоне длин волн (например, для $\lambda = 10,6$ мкм) на горизонтальных, вертикальных и наклонных трассах протяженностью не более 10 км при $|y_o - y_e| \le 10^{-2}$ м расчеты по формуле (11) показывают, что для коллимированных ($\mu = 0$) или расходящихся ($\mu < 0$) оптических пучков всегда выполняется условие $D_S(y_o, y_e) \ll 1$, т.е. среднее значение сигнала целеуказания (10) совпадает со значением и в однородной среде:

$$\langle \mathfrak{l} \rangle \cong \cos[k(n_o - n_e) d(y)] \sin(2\psi). \tag{12}$$

В силу этого на оптической оси системы (круговая поляризация) $\langle \iota \rangle = 0$, а на краях информационного поля (линейная поляризация) сигнал целеуказания ι принимает максимальные значения:

$$\langle \mathfrak{l} \rangle \cong \pm \sin(2\psi)$$

Мерой случайной модуляции сигнала целеуказания может служить нормированная дисперсия его флуктуаций. Рассчитанная при тех же предположениях, что и среднее значение сигнала целеуказания, нормированная дисперсия может быть записана следующим образом:

$$\sigma_{\iota}^{2} = \frac{\langle \iota^{2} \rangle - \langle \iota \rangle^{2}}{\langle \iota \rangle^{2}} \cong$$

$$= D_S(y_o, y_e) \operatorname{tg}^2[k(n_o - n_e) d(y)] + \frac{1}{2} D_S^2(y_o, y_e).$$
(13)

В центре информационного поля (круговая поляризация) — $\sigma_t^2 \rightarrow \infty$, что обусловлено нулевым значением среднего значения сигнала целеуказания (10). На краю информационного поля (линейная поляризация) величина дисперсии сигнала целеуказания (13) достигает минимального значения:

$$\sigma_{\iota}^2 \cong \frac{1}{2} D_S^2(y_o, y_e).$$

Для инфракрасного излучения в атмосфере при $|y_o - y_e| \le 10^{-2}$ м на горизонтальных, вертикальных и наклонных трассах протяженностью $x \le 10$ км величина дисперсии флуктуаций сигнала целеуказания, вызванных влиянием атмосферной турбулентности, практически по всему информационному полю поляризационной системы целеуказания не превышает уровня 10%. Исключение составляет только небольшая окрестность вблизи оптической оси системы, где уровень флуктуаций может быть значительным. Линейные размеры $(l_{\rm np})$ этой области могут быть оценены из условия

$$\sigma_{\iota}^2 \leq 0,1$$

В этом случае из (13) можно получить для $l_{\rm np}$ следующее выражение:

$$l_{\text{пр}} \leq l_{\text{поля}} \frac{\sqrt{10}}{\pi} \sqrt{D_S(y_o, y_e)},$$

где $l_{\text{поля}}$ — линейные размеры поля целеуказания в месте наблюдения.

Оценки показывают, что на вертикальных и наклонных трассах с $x \equiv 10$ км отношение $l_{\rm np}/l_{\rm noля} \le 0,1$ при любых атмосферных условиях. Лишь на горизонтальных приземных трассах (с высотой прохождения оптического излучения над подстилающей поверхностью ~ 1 м) в условиях максимальной турбулентности [3, 5] при $x \equiv 10$ км реализуется наиболее неблагоприятная ситуация, когда $l_{\rm np}/l_{\rm noля} \le 0,5$.

- 1. Кравцов Н.В., Стрельников Ю.В. Позиционночувствительные датчики оптических следящих систем. М.: Наука, 1969. 117 с.
- Зотов В.Д. Полупроводниковые устройства восприятия оптической информации. М.: Энергия, 1976. 151 с.
- Кравцов Ю.А., Рытов С.М., Татарский В.И. Введение в статистическую радиофизику. М.: Наука, 1980. 464 с.
- 4. Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 720 с.
- 5. *Татарский В.И.* Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.

I.P. Lukin, V.V. Nosov. Error of polarizational aim direction by optical radiation in turbulent atmosphere.

An error, introduced by atmospheric turbulence into the work of a system of aim direction based on the information field of polarization of optical radiation, is investigated. The statistical characteristics of a signal of aim direction the average value and the variance are theoretically studied. On the basis of the results, range of the system of aim direction is estimated.

Лукин И.П., Носов В.В.