В.Н. Крупчатников, Л.И. Курбацкая

Оценка влияния малых газовых составляющих на длинноволновое излучение в атмосфере

Институт вычислительной математики и математической геофизики, г. Новосибирск

Поступила в редакцию 9.02.2000 г.

Представлена оценка чувствительности радиационных потоков и притоков тепла, обусловленных длинноволновым излучением атмосферы и поверхности Земли, к вариациям концентраций газовых составляющих в атмосфере.

Малые газовые составляющие (МГС), которые в небольшом количестве всегда присутствуют в атмосфере, активно поглощают ИК-радиацию. К МГС относятся озон О₃, углекислый газ СО₂, метан СН₄, закись азота N₂O. Перечисленные выше МГС оказывают влияние на инфракрасное излучение поверхности Земли и атмосферы, поглощая его. Наиболее сильным поглотителем является водяной пар H₂O по всему спектральному интервалу от 4 до 120 мкм. Озон О3 поглощает в области λ = 9,6 мкм. Углекислый газ СО2 играет важную роль в радиационном балансе, он хорошо перемешан в атмосфере, его концентрация из года в год увеличивается и в настоящее время составляет 345 cm/m^3 . Поглощение ИК-излучения происходит, в основном, в 15-мкм области спектра.

Следующим по значимости поглощения ИКизлучения являются метан и закись азота. Метан CH₄, углеродосодержащий компонент, образуется у поверхности Земли и постепенно переносится вверх до тех высот, где он окисляется и становится, таким образом, источником оксида углерода и формальдегида. Химическим путем CH₄ в атмосфере не образуется, его источником служат биосфера и литосфера. Концентрация СН₄ в настоящее время составляет ~ 1,7 см/м³, он хорошо перемешан в тропосфере, но выше тропопаузы его содержание быстро убывает в результате окисления и участия в реакциях с другими газами. Содержание метана из года в год медленно возрастает на 1,2-1,5%. Закись азота N₂O образуется в почве, особенно сильно при более высоких температурах и при удобрении азотными солями. Содержание N2O в тропосфере составляет около 0,31 см/м³ и увеличивается на 0,3% в год. Поглощение ИК-излучения CH4 и N2O происходит в области 7,25-8,15 мкм.

В последние годы большое внимание уделяется проблеме роста CO_2 в атмосфере, обусловленного антропогенными факторами. Качественный анализ последствий роста содержания CO_2 приводит к выводу об усилении парникового эффекта и повышении температуры воздуха. Исследование поставленной проблемы с помощью климатических моделей сводится к изучению чувствительности глобального климата на удвоение, учетверение и т.д. содержания CO_2 . Примером подобных исследований может служить работа К. Вилсона и Дж. Митчелла [1], в которой представлены результаты экспериментов с 11-слойной моделью ОЦА с включением модели верхнего перемешанного слоя океана и термодинамической модели льда.

Один из экспериментов [1] показывает, что после удвоения СО₂ при достижении нового равновесного состояния среднегодовая температура в тропосфере повысилась ~ на 5 °C, а площадь, покрытая льдом, сократилась. Кроме этого произошло глобальное уменьшение облачности ~ на 3% за счет облаков среднего яруса, при этом отмечалось некоторое увеличение облачности верхнего и нижнего ярусов в полярных широтах. Изменилось и распределение осадков в летний сезон в северном полушарии таким образом, что в высоких широтах их стало больше, а над континентами в средних широтах северного полушария - меньше. Без сомнения, механизм образования аномалий средней температуры тропосферы δT , температуры поверхности δT_S , облачности и т.д. предопределен аномалиями в функциях воздействия, таких как потоки явного и скрытого тепла у поверхности, вихревые потоки нестационарных возмущений, радиационное нагревание, обусловленное наличием парниковых газов.

В данной работе делается попытка описания последнего фактора, приводящего к аномалиям. Кроме CO₂, который традиционно является наиболее важным парниковым газом, рассматриваются метан CH₄ и закись азота N₂O и оценивается их влияние на инфракрасное излучение. Для этой цели используется радиационная модель плоскопараллельной атмосферы, находящейся в состоянии локального термодинамического равновесия. Уравнения для восходящего $F_i^{\uparrow}(p)$ и нисходящего $F_i^{\downarrow}(p)$ потоков записываются в виде [2, 3]:

$$F_{i}^{\dagger}(p) = \{B_{i}(g) - B_{i}(p_{s})\} T_{i}(p, p_{s}) + B_{i}(p) - \int_{p_{s}}^{p} T_{i}(p, p') \{dB_{i}(p')/dp'\} dp',$$
(1)
$$F_{p_{s}}^{\downarrow}(p) = \{B_{i}(p_{s}), B_{i}(p_{s}), D_{i}(p_{s}, p_{s})\} + B_{i}(p) + D_{i}(p_{s}) + D_{i}(p$$

$$\Gamma_{i}(p) - \{B_{i}(top) - B_{i}(p_{top})\} T_{i}(p, p_{top}) + B_{i}(p) + \int_{p_{i}}^{p_{uop}} T_{i}(p, p') \{dB_{i}(p')/dp'\} dp',$$
(2)

$$F_{i,net}(p) = F_i^{\uparrow}(p) - F_i^{\downarrow}(p), \quad H(p) = (g/C_p) d\left\{\sum_i F_{i,net}(p)\right\}/dp,$$

где $F^{\uparrow}(p)$, $F^{\downarrow}(p)$ – восходящий и нисходящий потоки для *i*-го спектрального интервала; $B_i(p)$ – функция Планка; p_s – давление на поверхности Земли; p_{top} – давление на верхней границе атмосферы; $T_i(p,p')$ – функция пропускания для слоя от p до p'; g – обозначение уровня поверхности почвы, top – обозначение верхней границы атмосферы; g_0 – ускорение ($g_0 \cong 9,80665 \text{ м/c}^2$; $C_p = 1004 \text{ Дж/(кг · град)}$); H(p) – скорость радиационного выхолаживания;

$$T_i(p,p') = \exp\left[-\frac{\overline{S}_i u}{\sigma_i} \left(1 + \frac{\overline{S}_i u}{\pi' \gamma_{L_i}}\right)^{-1/2}\right],$$
(3)

где \overline{S}_i – средняя интенсивность линии; σ_i – среднее спектральное расстояние между линиями; γ_{L_i} – полуширина лоренцова профиля; u – содержание поглощающего вещества.

Функция пропускания $T_i(p, p')$ зависит от трех параметров: $\overline{S}_i / \sigma_i$, γ_i / σ_i и *u*. Количество поглощающего вещества *u* определяется как

$$u = \int_{z}^{\infty} \rho \, dz,\tag{4}$$

где ρ – плотность рассматриваемого вещества. Параметры \overline{S}_i/σ_i и γ_i/σ_i задаются в табл. 1 из [4], к ним добавляются данные для CH₄ и N₂O из [5].

При перекрывании полос поглощения различных газов функция пропускания смеси определяется с помощью закона перемножения. Функция поглощения H₂O в области континуума окна 8–12 мкм описывается соотношением [2]:

$$T(p,p') = \exp\{[-k_1\Phi_1(\theta)p + k_2\Phi_2(\theta)e]u\},$$
(5)

где $k_1 = 0, 1g^{-1} \text{ см}^2 \cdot \text{атм}^{-1}, k_2 = 20g^{-1} \text{ см}^2 \cdot \text{атм}^{-1}$ (при $\theta_0 = 263 \text{ K}$);

$$\Phi_1 = (263/\theta)^{-1.5}; \quad \Phi_2 = (263/\theta)^{6.5};$$
 (6)

е – упругость насыщения; *и* – количество H₂O (г/г).

Весь длинноволновый спектр в радиационной модели разбивается на 17 спектральных интегралов, в каждом из которых насчитывается функция пропускания T_i согласно (5), которая используется в уравнениях (1) и (2) для нахождения восходящих и нисходящих потоков. По вертикали рассматривается 18-уровневая модель с заданием граничных условий на верхней и нижней границах атмосферы. Эксперименты проведены по данным распределения по высоте температуры, удельной влажности, давления, озона из [6]. Объемное содержание СО2 задается постоянным, а объемное содержание CH₄ и N₂O варьируется. Для оценки влияния МГС на длинноволновое излучение рассмотрены следующие варианты: 1) газовые компоненты отсутствуют; 2) c H_2O ; 3) c CO_2 ; 4) c CH_4 ; 5) c N_2O ; 6) $H_2O + CO_2$; 7) $H_2O + CO_2 + CH_4$; 8) $H_2O + CO_2 + CH_4 + N_2O$; 9) $H_2O + CO_2 + CO_$ $+ 2CH_4 + N_2O; 10) H_2O + CO_2 + CH_4 + 2N_2O.$

Результаты показывают, что при отсутствии газовых компонент нисходящий поток F_s^{\downarrow} к поверхности Земли равен нулю, восходящий F_{top}^{\uparrow} на верхней границе атмосферы – 0,996 σT_s^4 . Табл. 2 состоит из двух частей. В первой приве-

дены нисходящие F_s^{\downarrow} и восходящие потоки F_{top}^{\uparrow} для каждой поглощающей компоненты в отдельности, во второй – комбинации их вариаций (композиций).

Таблица 1

Параметры статистической модели полосы в инфракрасном диапазоне

Интервал, см ⁻¹	\overline{S} / σ , cm ² · Γ^{-1}	$\pi \gamma_i / \sigma$						
Вращательная полоса H ₂ O								
40 - 160	7210,30	0,182						
160 - 280	6024,80	0,094						
280 - 380	1614,10	0,081						
380 - 500	139,03	0,080						
500 - 600	21,64	0,068						
699 - 720	2,919	0,060						
720 - 800	0,386	0,059						
800 - 900	0,0715	0,067						
15-мкм полоса CO ₂								
582 - 762	718,7	0,448						
6,3-мкм полоса H ₂ O								
1200 - 1350	12,65	0,089						
1350 - 1450	134,47	0,230						
1450 - 1550	632,9	0,320						
1550 - 1650	331,2	0,296						
1650 - 1750	434,1	0,452						
1750 - 1850	136,0	0,359						
1850 - 1950	35,65	0,165						
1950 - 2050	9,015	0,104						
2050 - 2200	1,529	0,116						
$6-9,2$ -мкм полоса CH_4 и N_2O								
1060 – 1180 (N ₂ O)	27,30	0,39						
1180 – 1240 (CH ₄ , N ₂)	90,40, 3240	0,17, 0,40						
1240 – 1300 (CH ₄ , N ₂ O)	1325,9, 1616,7	0,24, 0,87						
1300 – 1360 (CH ₄ , N ₂ O)	2800,1	0,28, 0,45						
1360 – 1320 (CH ₄)	109,4	0,39						
1420 – 1680 (CH ₄)	10,9	0,138						

Из табл. 2 видно, что наибольшее влияние на поглощение длинноволнового излучения оказывают H_2O и CO_2 . Учет CH_4 и N_2O приводит к увеличению нисходящего и уменьшению восходящего потоков. Удвоение как CH_4 , так и N_2O усиливает данный эффект. С другой стороны, из табл. 2 следует вывод о немонотонности характера влияния изменения концен-трации CH_4 и N_2O на выхолаживание в атмосфере. Чтобы понять от чего это может зависеть, рассмотрим некоторый спектральный интервал Δv_i , достаточно широкий, чтобы содержать необходимые спектральные линии исследуемых газов. Пусть T_i^k – функция пропускания смеси, тогда выхолаживание, связанное с восходящей радиацией на уровне *z*, будет равно

Таблица 2

Нисходящие F_s^{\downarrow} и восходящие потоки F_{iop}^{\uparrow} для отдельных компонент и их вариаций

Газ	$F_{s}^{\downarrow}(BTM^{-2})$	F^{\uparrow}_{top}
H ₂ O	265	361
CO ₂	76	412
CH ₄	16	446
N ₂ O	11	452
$H_2O + CO_2$	309,3	322
$H_2O + CO_2 + CH_4$	313,2	315,9
$\mathrm{H_{2}O} + \mathrm{CO_{2}} + \mathrm{CH_{4}} + \mathrm{N_{2}}$	315,6	313,9
$H_2O + CO_2 + 2CH_4 + N_2O$	316,6	312
$\mathrm{H_2O} + \mathrm{CO_2} + \mathrm{CH_4} + \mathrm{2N_2O}$	317,0	312,5

$$\frac{dF_i^{\uparrow}}{dz} = \pi B_i(z) \ \frac{dT_i^k}{dz} \ . \tag{7}$$

Аналогично для нисходящей

$$\frac{dF_i^{\downarrow}}{dz} = \pi B_i(z) \ \frac{dT_i^k}{dz} \tag{8}$$

и для эффективной радиации

$$H_i^k = \frac{dF_{net,i}^k}{dz} = \pi B_i(z) \ \frac{dT_i^k}{dz} \ . \tag{9}$$

Добавим к смеси из k газов еще один газ с главными линиями в этом же спектральном интервале. В этом случае эффективное выхолаживание запишем в виде

$$H_i^{k+1} = \pi B_i(z) \; \frac{dT_i^{k+1}}{dz} \; , \tag{10}$$

где $T_i^{k+1} = T_i^k T_i^1$. Если добавление газа вызывает уменьшение выхолаживания, т.е. $H_i^{k+1} < H_i^k$, то из (8) и (9) следует, что

$$\frac{dT_i^{k_i}}{dz} - \left(\frac{T_i^k}{1 - T_i^{k+1}}\right) \frac{dT_i^{k+1}}{dz} < 0.$$
(11)

Производную для функции пропускания в (10) можно найти из формулы (5):

$$\frac{dT_i^k}{dz} = C^k T_i^k \quad \text{if } \frac{dT_i^{k+1}}{dz} = C_i^{k+1} T_i^{k+1}, \qquad (12)$$

где C^k и C^{k+1} зависят от отношения смеси q^k и q^{k+1} , полуширины линии поглощения γ_i^k , γ_i^{k+1} средней интенсивности линий S_i^k , S_i^{k+1} . После замены в (10) производных для функции пропускания соотношениями (11) получается

$$\frac{T_i^{k+1}}{1 - T_i^{k+1}} > \frac{C^k}{C^{k+1}}$$
(13)

При рассмотрении конкретных моделей газовых примесей величины C^k и C^{k+1} вычисляются и критерий (13) легко проверить.

Из табл. 3 видно, что введение CH_4 и N_2O приводит к уменьшению выхолаживания в тропосфере ~ на 0,02 град/сут. Увеличение концентрации CH_4 вдвое вызывает уменьшение выхолаживания ниже 549 мбар ~ на 0,02 град/сут.

Из вышеизложенного следует, что в задачах моделирования возможных вариаций климата атмосферы, включающей в себя районы с повышенной концентрацией CH₄ и N₂O, последние необходимо учитывать в радиационном блоке модели ОЦА.

Таблица З

Скорости радиационного выхолаживания дТ/дt (град/сут) для отдельных компонент и для их вариаций как функции от р (мбар)

$\partial T/\partial t$ (p, мбар)	H_2O	CO ₂	CH_4	N_2O	$H_2O + CO_2$	$H_2O+CO_2+CH_4+N_2O$	$H_2O + CO_2 + 2CH_4 + N_2O$
2,27	- 0,3	- 1,15	- 0	0	- 1,47	- 1,473	-1,479
18,70	-0,4	- 1,20	- 0	0	- 1,56	- 1,56	-1,589
52,50	-0,24	-0,70	0	0	-0,95	-0,95	-0,958
96,70	-0,21	-0,34	0,016	0,014	-0,56	-0,55	-0,554
156	-0,44	-0,05	0,042	0,022	-0,49	-0,46	-0,452
223	-1,12	-0,104	0,048	0,025	- 1,23	-1,20	- 1,195
297	-1,90	-0,177	0,037	0,020	-2,7	-2,06	-2,059
378	-2,04	-0,208	0,022	0	- 2,19	-2,19	-2,195
458	- 1,74	-0,217	0	-0	-1,84	- 1,85	-1,850
542	- 1,5	-0,202	-0,014	-0,030	-1,58	- 1,59	-1,579
624	$-1,\!48$	-0,206	-0,038	-0,057	- 1,41	-1,40	-1,390
703	- 1,41	-0,198	- 0,062	-0,085	- 1,26	- 1,24	-1,224
777	- 1,45	- 0,193	-0,086	-0,115	- 1,23	-1,20	-1,187
844	- 1,62	- 0,196	- 0,112	-0,144	- 1,34	- 1,30	-1,290
901	-1,87	-0,216	-0,144	-0,173	- 1,56	- 1,52	-1,503
947	-2,11	- 0,238	-0,175	-0,198	-1,78	- 1,73	-1,714
980	$-2,\!48$	-0,308	-0,218	- 0,219	-2,16	- 2,12	-2,106
998	- 3,43	-0,518	-0,263	-0,232	- 3,26	- 3,22	- 3,200

Работа выполнена при поддержке РФФИ (гранты № 98-05-65318, 00-05-65459а).

1. Wilson C.A., Mitchell J.F. A donbled CO elimatesensitivity experi-

2. Roach W.T., Slingo A.A. A high resolution infrared radiative transfer

1987. V. 92. P. 315-343.

J.R.M.S. 1979. T. 105. N 445. P. 603-615.

ment with global climate model including ocean // J. Geoph. Res.

scheme to study the interaction of radiation with cloud // Quart.

- Goody R.M. A statical model for water vapor absorption // Quart. J.R.M.S. 1952. V. 78. P. 165–169.
- Rodgers C.D., Walshaw C.D. The computation of infra-red cooling rate in planetary atmospheres // Quart. J.R.M.S. 1966. V. 92. N 391. P.67–93.
- Розанов Е.В., Тимофеев Ю.М., Фролькис В.А. Влияние некоторых малых газовых составляющих на радиационный режим атмосферы в инфракрасном диапазоне // Изв. Ан СССР. Сер. ФАО. 1981. Т. 17. N 4. С. 384–390.
- Stone H.M., Manabe S. Comparison among varions numerical models gesigned for computing infraded cooling // Mon. Weat. Rev. 1968. V. 96. N 10. P. 735–741.

V.N. Krupchatnikoff, L.I. Kurbatskaya. Estimation of greenhouse gases influence on the long-wave radiation in the atmosphere.

Estimation of sensibility of the heating due to long-wave radiation in the atmosphere and on the surface to variations of the greenhouse gases is presented.