А.Н. Кучеров

Канал просветления в контрэйле

Центральный аэрогидродинамический институт им. Н.Е. Жуковского, г. Москва

Поступила в редакцию 15.03.2000 г.

Выполнен краткий обзор работ по газодинамическим, физико-химическим и оптическим свойствам конденсационных следов за высотными самолетами. Сделаны оценки возможности создания канала просветления лазерным пучком с целью дистанционного зондирования приосевой области выхлопной струи с максимальной концентрацией вредных выбросов.

Введение

Во всем мире в последние годы уделяют большое внимание исследованию авиационных выбросов и их влиянию на атмосферу [1-9]. Проблемы возникновения и эволюции контрэйлов (конденсационных следов) за самолетами связаны с изучением загрязнения атмосферы, в частности с проблемой влияния авиационных выбросов на озон [10]. сведениям ICAO (International Civil Aviation По Organization) [4] мировой авиатранспорт возрастал на 5-6% ежегодно в среднем с 1970 по 1993 г. и на 7-8% с 1994 по 1996 г. Использовалось топливо 1,3 $\cdot\,10^{14}$ – 1,8 $\cdot\,10^{14}$ г/год в 1992-1995 гг. (6% всех бензопродуктов). Из этого количества 65% сжигается в крейсерском режиме на высоте 10-13 км преимущественно широкофюзеляжными самолетами типа В-747 на широтах 30-55° с.ш. над США, Европой, Северной Атлантикой. Над тропопаузой сжигается 34% топлива. Над Северной Атлантикой в среднем за год доля сжигаемого в стратосфере топлива составляет около 50%. За последние 20 лет потребление топлива ежегодно росло на 3%. Высота крейсерского полета сверхзвукового пассажирского самолета второго поколения (СПС-2) будет составлять 15-18 км при числе М = 2 (типа Конкорд) или 18-20 км при M = 2,4 [2]. Эти высоты находятся недалеко от уровней максимальной концентрации озона (~24 км) и расположения полярных стратосферных облаков (~ 20 км).

1. Вредные выбросы

Выбросы авиационных двигателей измерялись в крейсерском полете и с помощью наземных моделирующих экспериментов [5–8]. Сжигание авиационного топлива (керосин) дает 3,15 кг CO_2 и 1,25 кг H_2O на 1 кг сожженного топлива [2–4]. Керосин содержит от 0,001 до 3 г серы на 1 кг топлива. Во время сгорания эта сера превращается в основном в SO_2 (а также в SO_3 и в серную кислоту H_2SO_4). Среднее содержание массы серы в топливе составляет 0,4–0,5 г/кг (топлива). Индекс эмиссии для SO_2 (масса выбросов на сгоревшую массу топлива) составляет около 0,8–1,0 г/кг.

В зависимости от условий окружающей среды, от типа и мощности двигателя, в процессе сгорания керосина в воздухе образуется 7–30 г/кг окислов азота NO_x (в единицах массы NO_2). Среднее по всему парку самолетов значение составляет 13–15 г/кг NO_2 . Предсказано, что окислы азота (NO_x) от флота СПС-2 будут существенно разрушать стратосферный озон [1]. Ранние прогнозы предсказывали, что сгорание в струе двигателя будет создавать 30 г NO_x на 1 кг сгоревшего топлива [1]. Затем в экспериментах, в практикуемых конфигурациях камеры сгорания был достигнут уровень 5 г/кг NO_x. При этом низком уровне эмиссии современные модели атмосферы предполагают, что технология СПС-2 может быть пригодной для окружающей среды [6].

Современный двигатель испускает около 0,01-0,1 г/кг сажи на массу сгоревшего топлива [1-4]. Типичный диаметр частиц составляет 10-30 нм. Наблюдавшееся число частиц – около 10¹⁵ на 1 кг сгоревшего топлива. Эмиссия окислов углерода СО и СНО уменьшается с увеличением мощности двигателя. Типичные измеренные значения индекса эмиссии составили 1-10 г/кг для СО и 0,1-1,0 г/кг для СНО. Двигатели выбрасывают также заряженные частицы, образующиеся в процессе горения. Эти частицы коагулируют быстрее, чем незаряженные, и ускоряют образование крупных частиц в выхлопном следе самолета. Частицы сажи и заряженные частицы могут служить ядрами (центрами) образования капель и кристаллов аэрозоля. Конденсация воды и замерзание капель растворов приводят к образованию видимых конденсационных следов (контрэйлов) на больших высотах, которые эволюционируют и переходят в образования, подобные природным перистым облакам. Устойчивые контрэйлы могут повлиять на озон, на радиационный баланс, в частности на повышение температуры земной поверхности. Для дистанционного зондирования области внутри плотного контрэйла необходимо создать канал просветления, например лазерным пучком [11-15].

2. Структура выхлопного следа

Выхлопной след обычно подразделяют на три стадии: *струйный*, *вихревой* и *дисперсионный* режимы [16– 19]. Завершается смешивание выбросов от самолета с окружающим воздухом очень длительным *диффузионным* режимом [20, 21].

Строгая численная модель струйного режима контрэйла приведена в [17, 22, 23], приближенные – в [23–26]. В струйном режиме горячие выхлопные газы расширяются свободно от сопла двигателя самолета. Вихревая пелена вокруг крыльев сворачивается в два противоположно вращающихся вихря, расположенных приблизительно на концах крыльев. Длительность струйного режима составляет примерно 10 с для широкофюзеляжного дозвукового самолета, такого как «Боинг-747-400» [20, 24]. Вихревой режим включает раннюю стадию эволюции вихря и взаимодействия с выхлопной струей [18, 19, 21, 27–29]. В работах [18, 19, 21] использовали модель крупных вихрей (МКВ), чтобы описать переход от следа самолета, обусловленного взаимодействием пары вихрей и архимедовой силы выхлопа, к следу, обусловленному атмосферной дисперсией. В вихревом режиме пара вихрей опускается вниз под воздействием индукционной скорости. Наибольшая часть выхлопного газа сохраняется в этом первичном следе и, следовательно, опускается ниже высоты полета. Однако часть выхлопа вовлекается во вторичный след, который создают сами вихри. Вторичный след связывает вихри с высотой полета [21]. Длительность вихревого режима обычно равна 2 мин [20, 21] или 100 с [24].

В табл. 1 представлены некоторые данные для дозвукового «Б.-747-400» и перспективного сверхзвукового «HSCT» (High Speed Civil Transport) самолетов [24, 30].

После распада вихря положительная плавучесть, обусловленная горячим выхлопом и снижением завихренности пары вихрей благодаря стратификации окружающей среды, может доминировать до существенного смешивания выхлопного газа с окружающим воздухом. Обычно этот дисперсионный режим длится 10 мин [20, 21] или 1000 с [24].

Наконец, в более позднее время, диффузия выхлопа определяется взаимодействием с окружающей атмосферой благодаря атмосферной турбулентности, гравитационным волнам и сдвиговым градиентам [27].

Ранняя стадия вихревого режима была исследована численно в двумерной постановке [29], включая атмосферные возмущения, стратификацию, плавучесть, сдвиговые градиенты. В работе [21] представлено трехмерное нестационарное явное моделирование распада взаимного индукционного вихревого следа за самолетом. Цель состояла в том, чтобы понять эффекты динамики и химии смешивания в следе. Начальные условия взяты из результатов моделирования ближнего следа за тремя самолетами: «Б.-737», «Б.-747» и «ER-2». В табл. 2 представлены некоторые данные для самолетов, атмосферы и численных параметров в 4 ситуациях. Начальное расстояние между вихрями *b*₀, радиус ядра *r*₀, циркуляция Γ и начальное время падения t_f (определено как начальное расстояние b_0 , поделенное на начальную скорость падения вихрей) - это приближенные данные, вычисленные с помощью программы UNIWAKE [31].

Более позднее по времени распыление следа, обусловленное динамикой окружающей атмосферы, было предметом исследования некоторых недавних работ, включающих МКВ [27].

Длительности различных стадий и коэффициенты диффузии, определяющие эволюцию выхлопного следа, представлены в табл. 3 [18, 20].

Таблица 1

Высота, температура выхлопа, крейсерское число Маха, мольные доли паров воды H₂O и двуокиси азота NO₂, время перехода от струйного к вихревому и от вихревого к дисперсионному режимам для самолетов «Б.-747-400» [24] и «HSCT» [30]

Самолет	<i>h</i> , км	Т, К	Число М	C_{H_2O}	C_{NO_2}	<i>t</i> , с (струя)	<i>t</i> , с (вихрь)
«Б747-400» «HSCT»	10,6 18,4	590 561	0,8 2,4	$\begin{array}{c} 4,28\cdot 10^{-2} \\ 3,02\cdot 10^{-2} \end{array}$	$\begin{array}{c} 2,25 \cdot 10^{-5} \\ 4,80 \cdot 10^{-6} \end{array}$	8 0,2	66 31

Таблица 2

Начальные данные моделирования с помощью МКВ [21]

Вариант	1	2	3	4	
Самолет	Самолет «Б737»		«Б747»	«Б747»	
Размах крыла, м	28,9	31,4	60,8	60,8	
Скорость воздуха, м/с	244	201	268	268	
Двигатели	2 на крыльях	1 на хвосте	4 на крыльях	4 на крыльях	
$\int T dy dz$, K \cdot m ²	1100	430	8600	8600	
асстояние между вихрями, м					
	22,7	23,9	47,4	47,7	
Радиус ядра, м	2,5	5,0	4,6	4,6	
Циркуляция, м ² /с	220	383	414	414	
t_f, c	14,7	9,4	34,1	34,1	
	Атм	осферные параметры			
$N = (g/\rho) d\rho/dz, c^{-1}$	0,012	0,021	0,012	0,012	
Слвиг $S = du/dz$, c ⁻¹	0	0	0	0.02	
TKE, M^2/c	0.1	0.05	0.09	0.07	
(турбулентная кинетическая энергия)	- ,	-)	- ,		
· · ·	Чи	сленные параметры			
Сеточная область, км	0,2×0,24×0,32	0,2×0,24×0,32	0,4×1×1	0,2×1×0,8	
Минимальная ячейка, м	2×1×1	2×1.1×1.1	4×2×2	2×2×2	

Параметры выхлопа на различных стадиях

Параметр	Струя		Вихрь			Дисперсия		Диффузия	
	1 c	20 c	20 c	80 c	130 c	130 c	5 мин	1ч	10 ч
D_h , M^2/c	0,4	0,4	-	0	-	0,1	220	1423	
D_v , m ² /c	0,4	0,4	_	30	-	0	≤ 0	0,15.	0,18
$c_{\rm pri}/c_0, 10^{-4}$	300	23	-	12	-	0,31	0,2	0,001	≤0,001
$c_{\rm sec}/c_0, 10^{-4}$	-	_	_	0,60,2	-	0,10,3	0,4		
$A_{\rm pri}, 10^{-4} {\rm m}^2$	0,05	0,30,4	_	0,50,9	-	0,52	5	2050	$10^2>10^3$
$A_{\rm sec}, 10^{-4} { m m}^2$	-	_	_	0,080,8	-	0,52	2		
$w, 10^{-3} c^{-1}$	800	35	-	330	-	3040	2	0,1.	0,3

 Π римечание. D_h – горизонтальный и D_v – вертикальный коэффициенты диффузии; c/c_0 – разбавление концентрации выхлопа, усредненной в направлении полета для первичного (pri) и вторичного (sec) следа, c₀ - концентрация на срезе выхлопного сопла; скорость вовлечения $w = -d \left(\ln[c_{max}] \right)/dt$ (по отношению к максимуму c) для смешивания выбросов от дозвукового широкофюзеляжного самолета в стационарной стратифицированной атмосфере на высоте крейсерского полета. A – площадь поперечного сечения выхлопа (по отношению к средней концентрации $10^{-7} c_0$). Диапазон значений в диффузионном режиме для тепловой стратификации N составляет 0,011 – 0,023 с⁻¹, сдвиг ветра $S = 0 \div 0,007$ с⁻¹, слабая турбулентность. Для всех других режимов $N = 0,014 \text{ c}^{-1}$ и S = 0.

Численное моделирование эволюции взаимодействия вихрей с выхлопной струей сравнивалось с фотографиями [21] и экспериментальными лидарными наблюдениями [27]. Отмечено качественное соответствие.

3. Критерий образования конденсационного следа

При благоприятных условиях (влажность, температура, давление) в выхлопной струе образуется видимый конденсационный след, состоящий из капель воды и кристаллов льда. Физико-химические преобразования выбросов тесно связаны с эволюцией контрэйла. Процесс образования контрэйла, расстояние от среза сопла двигателя до поверхности конденсации (кристаллизации), начальная концентрация воды или льда (водность или ледность следа), температура, скорость контрэйла и другие параметры определяют дальнейшую эволюцию вредных выбросов. На основе [32-35], следуя [36], выведем условия конденсации. Давление газа в струе р примем постоянным и равным атмосферному: $p \cong p_{\infty}$. На 1 кг израсходованного топлива в атмосферу добавляется Е_w кг воды в виде пара (Е_w – индекс эмиссии воды), (1 – η) ε_f Дж тепла от двигателя и q/q_f кг выхлопных газов (в основном это воздух). Здесь ε_f – удельная теплотворная способность топлива; $\eta = A/Q - \kappa \pi d$ двигателя; $A = Fu_{\infty}$ – полезная мощность; F – тяга двигателя; u_{∞} – скорость самолета; $Q = \varepsilon_{f}q_{f}$ – полная мощность двигателя; q_f, q – расход топлива и полный расход газов. При смешивании выхлопных газов с N частями холодного воздуха из окружающей атмосферы (при температуре T_{∞}) увеличение температуры смеси составляет

И.

или

$$T - T_{\infty} = \frac{(1 - \eta)\varepsilon_f q_f}{q(1 + N) C_p} + \frac{Y_L L}{C_p} .$$
(1)

 $(1 - \eta) q_f \varepsilon_f + (1 + N) q Y_L L = (1 + N) q C_p (T - T_{\infty})$

Здесь С_р- удельная теплоемкость смеси при постоянном давлении; *L*(*T*) – удельная теплота конденсации воды; $Y_L = \rho_L / \rho$ – массовая концентрация сконденсировавшейся воды. Введем также массовую концентрацию пара в смеси $Y = \rho_{\nu}/\rho$, где ρ_{ν} , ρ_L , ρ – плотности пара, воды и смеси; заметим, что $q = \rho u_{\infty}$.

Запишем для смеси массой (1 + N)q уравнение сохранения массы воды в процессе конденсации. Поступающий в двигатель за единицу времени воздух содержит (q – q_t) $Y_{\infty} \approx q Y_{\infty}$ паров воды. Сгорание топлива и подмешивание воздуха добавляют $E_w q_f$ и NqY_∞ паров воды. В результате конденсации часть пара переходит в жидкую фазу, масса которой равна $(1 + N) q Y_L$. Оставшийся пар имеет концентрацию $Y_{sw}(T) \cong \mu_w p_{sw}(T)/\mu p_{\infty}$, где $p_{sw}(T)$ – давление насыщенного над водой пара при температуре смеси $T; \mu_w,$ µ – молярные массы воды и смеси (воздуха). Уравнение сохранения массы воды (жидкой и газообразной) есть

$$(1+N) qY_{\infty} + E_w q_f = (1+N) qY_{sw}(T) + (1+N) qY_L(T).$$
(2)

Подставляя $q_{f}(1 + N) q$ из (1), получим

$$Y_{sw}(T) - Y_{\infty} = C(T - T_{\infty}) - Y_{L}(T) \left[1 + \frac{E_{w} L}{(1 - \eta) \varepsilon_{f}} \right];$$

$$C = \frac{E_{w} C_{p}}{(1 - \eta) \varepsilon_{f}} \cong \text{const.}$$
(3)

На пороге конденсации величина У_L равна нулю. Получаем известное соотношение [32]:

$$\Delta Y \equiv Y_{sw}(T_c) - Y_{\infty} = C(T_c - T_{\infty}) \equiv C \,\Delta T.$$
⁽⁴⁾

В левой части уравнения (4) имеем экспоненту от Т, в правой – прямую линию. Если они нигде не пересекаются, то конденсации нет. При конденсации в общем случае прямая пересекает экспоненту в двух точках. Между этими точками (температурами), соответствующими началу и концу конденсационного следа, пар перенасыщен и частично конденсируется в воду. На пороге конденсации, где количество воды минимально и равно нулю, прямая касается экспоненты в единственной точке $T = T_c$. Критерий порога конденсации есть $Y_L = 0$ и $dY_L/dT = 0$ или, согласно (3):

$$\frac{dY_{cw}\left(T_{c}\right)}{dT} = C.$$
(5)

523

Используя уравнение Клаузиуса – Клайперона $p_{sw}(T) = p_{sw}(T_{\infty}) \exp \left[\int_{T_{\infty}}^{T} \frac{\mu_w L(T)}{RT^2} dT \right],$ вычислим производ-

ную $dY_{sw}/dT = Y_{sw}(T_c) \mu_w L(T_c)/RT_c^2$ и далее из (4), (5) находим, что малое приращение температуры $\Delta T = (T_c - T_\infty)$ на пороге конденсации равно

$$\frac{\Delta T}{T_{\infty}} \approx \frac{RT_{\infty}}{\mu_{w} L_{\infty}} - \frac{Y_{\infty}}{CT_{\infty}} + \frac{RT_{\infty}}{\mu_{w} L_{\infty}} \left(\frac{RT_{\infty}}{\mu_{w} L_{\infty}} - \frac{Y_{\infty}}{CT_{\infty}}\right) \left(2 - \frac{T_{\infty}}{L_{\infty}} \frac{dL(T_{\infty})}{dT}\right).$$
(6)

Последним слагаемым можно пренебречь, так как его относительный вклад в температуру порога конденсации T_c даже при $Y_{\infty} = 0$ (сухой воздух) составляет тысячные доли. Подстановка пороговой температуры T_c в (4) дает нам пороговое значение давления окружающего воздуха $p_{\infty c}$, выше которого (при заданной температуре T_{∞} и концентрации паров воды Y_{∞} в атмосфере) наступит конденсация:

$$p_{\infty c} = \frac{\mu_w}{\mu} \frac{p_{sw}(T_{\infty} + \Delta T)}{C\Delta T + Y_{\infty}} .$$
⁽⁷⁾

Уравнение (7) можно также трактовать как определение порога конденсации по температуре окружающего воздуха $T_{\infty c}$, ниже которой возможна конденсация при заданной высоте полета (давлении p_{∞}) и концентрации Y_{∞} (относительной влажности атмосферы $S_{\infty} = \rho_{\nu \infty}/\rho_{sw\infty} = Y_{\infty}/Y_{sw\infty}$, где $\rho_{sw\infty}$, $Y_{sw\infty}$ – плотность и массовая концентрация насыщенного над водой пара; $\rho_{\nu \infty}$ – плотность пара при температуре T_{∞}). Заметим, что в абсолютно сухом воздухе ($Y_{\infty} = 0$) приращение температуры смеси на пороге конденсации следа не зависит от параметров топлива и двигателя (от постоянной *C*) и определяется только температурой атмосферы T_{∞} . Некоторые детали процесса образования контрэйла (состав частиц аэрозоля, фазовое состояние и концентрация отдельных компонент) остаются невыясненными [37].

В [32] впервые отмечено постоянство отношения приращения концентрации пара к приращению температуры в следе $\Delta Y / \Delta T \cong dY / dT = C$ (см. (4), (5)). В [34] говорится о необходимости учета кпд двигателя. В [35] впервые введена необходимая для строгого анализа концентрация воды в жидкой фазе Y_L. Отметим, что выражения для давления и температуры на пороге конденсации в [35] неверны, так как получены с помощью асимптотического разложения выражения для давления насыщенного пара по малому приращению температуры. Но величина $\Delta T/T_{\infty} \ll 1$ порядка $RT_{\infty}/\mu_{w}L_{\infty}$ (см. (6)), следовательно, показатель степени экспоненты в уравнении Клаузиуса – Клайперона равен примерно единице и разложение экспоненты в ряд некорректно. Отличие давления $p_{\infty c}$ из [35, с. 134] от формулы (7) при $T_{\infty} = 203-273$ К и $S_{\infty} = 0$ составляет 10,3-8,1%. С ростом S_{∞} уменьшаются величина $\Delta T/T_{\infty}$ и погрешность вычисления $p_{\infty c}$ по формуле из [35] до значений 7,4–5,1% при $S_{\infty} = 0,5$ и 2,3–3,3% при $S_{\infty} = 1$.

Приведем примеры расчета порога конденсации для аэробусов Ил-86 и Ил-96 в крейсерском полете на высоте 11 км и для российского сверхзвукового пассажирского са-

молета второго поколения СПС-2 [38] на высоте 18 км. Примем $E_w = 1,25$; $\varepsilon_f = 43$ МДж/кг; $\eta = 0,3$; $T_{\infty} = 216,7$ К; $L_{\infty} = 2,65$ МДж/кг; $C_p = 1006$ Дж/(кг · К). Границы областей образования контрэйла построены на рисунке. Здесь кривая 1 соответствует относительной влажности $S_{\infty} = 0; 2 - 0; 2 - 0; 2 - 0; 3 - 0;$ 0,5; 3 – 1,0; кривая 4 – стандартная атмосфера; «+» – Ил-86 и Ил-96; «*» - СПС-2; отрезком 5 отмечены сезонные и широтные изменения температуры (±30 °С). При $T_{\infty} = 216,7$ К (крейсерский полет рассматриваемых самолетов) приращение температуры смеси ΔT на пороге конденсации составляет $\Delta T = 8,45-1,11$ К ($S_{\infty} = 0 \div 1,00$). Гомогенное или гетерогенное (на частицах сажи) замерзание капель, состоящих из чистой воды или растворов кислот, приведет к частичному выделению тепла и к понижению концентрации пара до уровня давления насыщения надо льдом $p_{si}(T_i) < p_{sw}(T_c)$. Приращение температуры $\Delta T_i = (T_i - T_{\infty})$ и концентрацию образовавшегося кристаллического аэрозоля Y_i можно оценить в этом случае аналогичным путем, используя уравнения сохранения энергии и массы. Получим

$$\frac{\Delta T_i}{T_{\infty}} \cong \frac{\Delta T}{T_{\infty}} + \frac{RT_{\infty}C}{\mu_w C_p} \frac{L_{i\infty} - L_{\infty}}{L_{\infty}} \cong \frac{\Delta T}{T_{\infty}} , \qquad (8)$$

$$Y_{i}(T_{i}) = Y_{sw}(T_{c}) - Y_{si}(T_{i}) \cong Y_{sw}(T_{c}) - Y_{si}(T_{c}).$$
(9)

Отличия температур конденсации T_c и кристаллизации T_i пренебрежимо малы. Массовая концентрация образовавшегося кристаллического аэрозоля при $S_{\infty} = 0$ на нижнем и верхнем порогах конденсации $(T_{\infty} = 222,25 \text{ K}; p_{\infty c} \approx 0,259 \text{ бар}, h \approx 10 \text{ км и } T_{\infty} = 216,7 \text{ K}; p_{\infty c} \approx 0,147 \text{ бар}, h \approx 14 \text{ км})$ составляет $Y_i = 1,27 \cdot 10^{-4}$ и $1,32 \cdot 10^{-4}$, ледность (концентрация кристаллов льда) – $\rho_i = \rho Y_i \approx 5 \cdot 10^{-5}$ и $3 \cdot 10^{-5} \text{ кг/м}^3$, т.е. это различимый контрэйл [32].

4. Параметры контрэйла

Параметры газа на срезе выхлопного сопла приведены в [24, 30, 36, 38] для самолетов «Б.-747-400», «HSCT», Ил-86, Ил-96 и СПС-2 соответственно. Отметим, что наиболее существенное остывание и торможение выхлопных газов происходят в струйном режиме. С помощью приближенных аналитических [23, 24], а также полуэмпирических формул [39] для расчета изменений параметров выхлопа в струйном режиме в [14, 15, 36] вычислены начальные параметры контрэйла – расстояния до поверхностей конденсации и кристаллизации, температура смеси, избыточная скорость, начальная водность и ледность. Различные приближенные формулы сравнивались между собой и с численными решениями [12, 17, 23]. Отличия составили около 1–10% на больших расстояниях, порядка 1000 м.

В [36] установлено, что относительно небольшие (~10%) изменения начальных параметров на срезе сопла (температуры, влажности), а также температуры атмосферы, связанные с изменением сезона (зима – лето) или широты (экватор, средние широты, полюс), могут вызвать многократные изменения (>100%) величин расстояния до контрэйла, начальной водности и ледности, оптической плотности τ. Контрэйлы имеют форму трубы или «чулка» с тонкими постепенно утолщающимися стенками, которые смыкаются на некотором расстоянии от самолета. В [15] показано, что все контрэйлы за самолетами имеют максимальную поперечную оптическую толщину в начальном сечении – сечении смыкания аэрозоля на оси струи.

В табл. 4 [15] представлены следующие величины: координаты x_{max} сечений с максимальной поперечной оптической толщиной τ_{max} и значения последней; длина экспоненциального затухания излучения $L_{exp} = 1/bw(x_{max},0)$ на оси струи; ледность аэрозоля $w(x_{max},0)$; избыточная скорость струи $V = u(x_{max},0) - u_{\infty}$; радиус струи R_j ; температура газа $T(x_{max},0)$. Коэффициент ослабления излучения кристаллическим водным аэрозолем равен $b \equiv b_{ext} = 1,7b_i$. Длина волны излучения – 10,6 мкм ($b_i \approx 80 \text{ м}^2/\text{кг}$ – удельный коэффициент поглощения льда), $S_{\infty} = 0$.

Таблица 4

Начальные параметры контрэйлов за самолетами «Б.-747-400», Ил-86, Ил-96, СПС-2, «HSCT» [15]

Самолет	«Б747»	Ил-86	Ил-96	СПС-2	«HSCT*»
Расстояние <i>x</i> _{max} , м	292	96	40	651	2341
Максимальная поперечная оптическая толщина т _{тах}	0,36	0,085	0,154	0,0716	0,0626
Продольная длина эксп. затухания Lexp, м	12,99	25,01	12,83	78,73	184,7
Ледность $w(x_{\text{max}}, 0)$, кг/м ³	$5,66 \cdot 10^{-4}$	$2,94 \cdot 10^{-4}$	$5,73 \cdot 10^{-4}$	$9,34 \cdot 10^{-5}$	$3,98 \cdot 10^{-5}$
Избыточная скорость $V = u - u_{\infty}$, м/с	18,01	26,37	100,6	21,45	5,057
Радиус струи R _i , м	4,181	1,91	1,91	4,152	6,25
Температура Т, К	248,1	241,4	248,0	230,8	223,4

* Относительная влажность $S_{\infty} = 0,9$.

5. Канал просветления в контрэйле

Образовавшийся водно-кристаллический аэрозоль препятствует зондированию центральной части струи с максимальной концентрацией вредных выбросов и продуктов химических реакций. В [11-15] исследовалась возможность создания канала пониженной оптической плотности в контрэйле с помощью лазерного пучка, испаряющего частицы. В основу исследования положены результаты по просветлению водно-капельной облачной среды [40-45]. Предварительные расчеты и оценки необходимых параметров пучка выполнены в [11]. Взаимодействие пучка с аэрозолем в приближении водности описывается нелинейным уравнением Френеля (или Шредингера), уравнениями переноса аэрозоля и нагрева среды. Задача содержит следующие параметры подобия: число Френеля $F = 2\pi r_0^2 / \lambda L$, r_0 – радиус пучка, L – длина трассы; параметры молекулярного поглощения Ng = agL и аэрозольного ослабления излучения $N_b = w_* bL$, $\ddot{w}_* - \ddot{x}$ арактерное значение водности (ледности) аэрозоля, α_g , $\alpha_b = w_*b - \kappa o \Rightarrow \phi$ фициенты поглощения газом и ослабления аэрозолем; параметр теплового самовоздействия $N = (L/r_0)^2 Q(n_0 - 1)/n_0$, $Q = \alpha_* I_0 t_0 / \rho_0 C_p T_0$ – параметр нагрева, $\alpha_* = \max \{\alpha_g, \alpha_a\}$ – эффективный коэффициент поглощения, α_a – коэффициент поглощения излучения аэрозолем, $I_0 = P_0 / \pi r_0^2$ – интенсивность излучения, P_0 – мощность пучка, $t_0 = r_0/V_0$ – характерное время обдува пучка, V_0 – избыточная скорость струи, ρ_0, T_0, n_0, C_p – плотность, температура, показатель преломления воздуха, теплоемкость при постоянном давлении; параметр просветления аэрозоля $N_v = \beta b_a I_0 t_0 / H_0 V_0$, $b_a = \alpha_a / w_* -$ удельный коэффициент поглощения аэрозоля, β – часть поглощенной энергии излучения, которая идет на испарение частицы, H_0 – скрытая теплота испарения воды (льда). Для рассматриваемой задачи основным является параметр просветления. Методы решения уравнения параксиальной оптики описаны, например, в [46, 47]. Сравнительные характеристики различных алгоритмов вычисления даны в [48]. Широко используется метод разложения в ряды Фурье с применением быстрого Фурьепреобразования. Порядок аппроксимации уравнений – не ниже второго по всем независимым переменным задачи.

Для перспективных сверхзвуковых самолетов СПС-2 и «НSCT» установлено, что при радиусе пучка 1–5 см на расстоянии 1–1,5 км от сопла двигателя (ширина контрэйла составляет 10–40 м) достаточно нескольких сотен джоулей, чтобы существенно снизить оптическую плотность в канале шириной в несколько диаметров пучка за время порядка 1–10 мс. Тепловое самовоздействие ($N \le 10^{-3}$), поглощение газом ($N_g \le 10^{-4}$) и ослабление аэрозолем ($N_b \le 10^{-2}$) малы. Дифракционное расширение начинает сказываться при $r_0 < 1$ см.

В [11] параметры струи задавались на основе приближенных аналитических решений. В [12] в качестве начальных данных для задачи просветления задавались распределения параметров, полученные на основе более точной численной модели. Учет коагуляции капель привел к существенному увеличению размеров капель. Установлено сильное влияние кпд испарения отдельной капли β и зависящих от него параметров подобия N_ν, N (испарения и самовоздействия). Показано, что на больших высотах при низких температурах существуют условия, при которых относительно небольшие изменения радиуса капель (например, в процессе испарения лазерным лучом) приводят к значительному уменьшению параметра β (кпд испарения).

Испарение капли радиуса *а* описывается системой уравнений:

$$\frac{da}{dt} = -\frac{j}{\rho_w} ; \quad \rho_w C_{pw} \frac{dT}{dt} = \alpha_d I - \frac{3}{a} \{ jH + j_T \} \approx 0$$

где ρ_w , C_{pw} , H – плотность, удельные теплоемкость и теплота испарения воды; T – температура капли; I – интенсивность излучения; $K_a(a)$, $\alpha_d = 3K_a/4a - \phi$ актор и среднеобъемный коэффициент поглощения излучения на отдельной капле; *j*, *j*_T – плотности потока массы и тепла с поверхности капли. Вычисление величин j, j_T описано в [49]. Используя связи потоков массы и тепла *j*, *j*_T с другими получим параметрами, зависимости величин $\beta = jH/\alpha_d I_0 \approx jH / (jH + j_T), N_v, N$ от физических параметров пучка I₀, r₀, среды и капли. Показано, что зависимости водности и оптической толщины от параметра просветления N_{ν} , с учетом его изменения, и от мощности пучка P_0 (при $N_v = \text{const}$) существенно различны. Возникает вопрос о справедливости приближения водности, в котором предполагается линейность связи скорости испарения капли и потока массы с ее поверхности к величине интенсивности (мощности) пучка, а также постоянство параметра В. В [13] исследование процесса просветления в более строгой постановке с учетом распределения капель по размерам и уменьшения капель в процессе испарения показало, что приближение водности дает удовлетворительные результаты (в пределах нескольких процентов погрешности) вблизи границы диффузионного режима испарения при значениях модального радиуса *a_m* < 1,5 мкм $(I_0 = 10^7 \text{ BT/m}^2)$ капель И при $I_0 < 5 \cdot 10^6 \text{ Вт/м}^2$ ($a_m = 2,5$ мкм). Вне этих границ приближение водности завышает ширину и глубину канала просветления.

В случае продольного к конденсационной струе распространения лазерного пучка существует поверхность, на которой образуется аэрозоль, и в уравнениях аэрооптики появляется источниковый член. В [14] получены аналитические решения для интенсивности, водности и оптической толщины аэрозоля, аналогичные решению Гликлера [50]. В качестве примера рассмотрено просветление контрэйлов за сверхзвуковыми самолетами, американским «HSCT», отечественным СПС-2, а также за дозвуковыми пассажирскими самолетами «Б.-747-400» и российскими аэробусами Ил-86, Ил-96. Построены зависимости последних от координаты и от времени на расстояниях значительного просветления среды и существенного ослабления излучения.

На больших высотах водный аэрозоль в облаках и в конденсационном следе самолета содержит кристаллическую фазу [51]. Задача просветления кристаллического аэрозоля включает нагрев, сублимацию, испарение и разрушение индивидуальных частиц. Для трех типичных форм (плоские диски, длинные цилиндры – иглы, сферы) рассмотрены источники тепла внутри частиц, обусловленные поглощением лазерного излучения, и получены универсальные выражения для потоков массы и энергии с поверхности частиц, которые отличаются эффективными радиусами [52].

В [15] в приближении водности исследовано просветление кристаллического аэрозоля лазерным пучком. Рассмотрены варианты однородной среды (облака) и осесимметричной выхлопной струи. При вычислении оптической толщины учитывалось распределение по размерам и различные формы ледяных частиц (сферы, цилиндры, плоские диски). В качестве примеров рассмотрены контрэйлы за дозвуковыми самолетами «Б.-747-400», Ил-86, Ил-96 и перспективными сверхзвуковыми «HSCT», СПС-2. Форма частиц влияет на коэффициенты поглощения, рассеяния и ослабления излучения [53]. Установлено, что в инфракрасном диапазоне длина волны излучения 10,6 мкм является наиболее подходящей для просветления аэрозоля благодаря максимальному коэффициенту поглощения. Время установления оптической толщины τ просветляемого ледяного аэрозоля составляет 3-4t₀. Снижение оптической толщины τ в контрэйлах больше, чем в однородных облаках при эквивалентных оптических толщинах. Многократное уменьшение скорости поперечного обдува (в 8 раз) приводит к снижению т вдвое (Ил-96). Просветление неэффективно при углах падения пучка, близких к оси (<10°) из-за резкого роста т.

Просветление кристаллического аэрозоля зависит от формы и размера частиц. Для плоских дисков утроение толщины приводит к удвоению величины характерной интенсивности просветления βI_0 . Для цилиндров увеличение радиуса на порядок приводит к удвоению характерной интенсивности просветления. Для крупных сфер (моно- и полидисперсный аэрозоль) увеличение радиуса в 1,5–2 раза приводит к увеличению интенсивности просветления βI_0 на 30%. Для малых сфер эта зависимость более существенна [15]. Если плавление и трансформация частиц в капли происходят за очень короткое время по сравнению с полным временем разрушения аэрозольной частицы, то влияние формы кристаллов на процесс просветления незначительно [52].

Работа выполнена при поддержке РФФИ (грант №99-01-00446) и ЦАГИ.

- 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft. Assessment Chair: Richard S. Stolarski // NASA Reference Publication 1381, Washington, DC, November 1995.
- Carpentier J. Impact of aviation upon the atmosphere // Proceedings of International Colloquium «Impact of Aircraft Emissions upon the Atmosphere». Paris 15–18 October 1996. V. I. P. 31–49.
- 3. Schumann U. // Annal. Geophys. 1994. V. 12. № 10/11. P. 365–384.
- Schumann U. The Impact of Aviation on the Atmosphere // Pollutants from Air Traffic (Results of Atmospheric Research in 1992–1997 years). German Aerospace Center. 1997. P. 1– 21.
- Amanatidis G.T., and Angeletty G. // Proceedings of International Colloquium «Impact of Aircraft Emissions upon the Atmosphere», Paris 15–18 October 1996. V. I. P. 51–55.
- Wesoky H.L., and Friedl R.R. // Proceedings of International Colloquium «Impact of Aircraft Emissions upon the Atmosphere», Paris 15–18 October 1996. V. I. P. 57–62.
- Schumann U., Arnold F. et al. // Proceedings of International Colloquium «Impact of Aircraft Emissions upon the Atmosphere», Paris 15–18 October 1996. V. I. P. 63–68.
- Cottington R.V. // Proceedings of International Colloquium «Impact of Aircraft Emissions upon the Atmosphere», Paris 15–18 October 1996. V. I. P. 69–74.
- 9. *Fabian P., and Karcher B.* // Phys. and Chem. of the Earth. 1997. V. 22. № 6. P. 1–96.
- 10. Johnston H.S. // Science. 1971. V. 173. № 3996. P. 517-522.

- Коган М.Н., Кучеров А.Н. // Ученые записки ЦАГИ. 1998. Т. 29. № 1–2. С. 118–130.
- 12. Кашеваров А.В., Коган М.Н., Кучеров А.Н., Стасенко А.Л. //Оптика атмосферы и океана. 1997. Т. 10. № 12. С. 1568–1577.
- Кучеров А.Н. //Оптика атмосферы и океана. 1997. Т. 10. № 12. С. 1578–1587.
- 14. Kucherov A.N. // Proceedings of SPIE. 1999. V. 3983. P. 118-127.
- Kucherov A.N. Clearing of ice aerosol in clouds and in condensation trails of aircraft //Proceedings of SOQUE. Int. Conf. «LA-SERS'99», 13–17 December, 1999, Quebec, Canada (in print).
- 16. Hoshizaki H.L., Anderson B. et al. // Aircraft wake microscale phenomena // CIAP (Climate Impact Assessment Program). The Stratosphere Perturbed by Propulsion Effects, chap. 2. US Department of Transportation, Washington, DC, 1975.
- 17. Karcher B. // J. of Geoph. Res. 1994. V. 99. № D7. P. 14509– 14517.
- Gerz T., Dureck T., Konopka P. // J. Geophys. Research. 1998.
 V. 103. № D20. P. 25905 25913.
- 19. Gerz T., and Holzapfel F. // AIAA J. 1999. V. 37. № 10. P. 1270–1276.
- Gerz T., Dureck T., and Konopka P. Effective diffusion of aircraft emissions at micro- and mesoscales // Pollutants from Air Traffic. German Aerospace Center. 1997. P. 103–112.
- 21. Lewellen D.C., and Lewellen W.S. // AIAA J. 1996. V. 34. № 11. P. 2337–2345.
- 22. Karcher B., and Fabian P. // Annal. Geophys. 1994. V. 12. № 10/11. P. 911–919.
- 23. Кашеваров А.В., Стасенко А.Л. // Ученые записки ЦАГИ. 1994. Т. 25. № 3-4. С. 103-115.
- 24. Karcher B. // J. of Geophys. Res. 1995. V. 100. № D9. P. 18835–18844.
- 25. Karcher B., Peter Th., Ottman R. // Geophys. Res. Lett. 1995. V. 22. № 12. P. 1501–1504.
- 26. Karcher B. // Geophys. Res. Lett. 1996. V. 23. № 15. P. 1923-1936.
- 27. Lewellen D.C., Lewellen W.S. et al. // AIAA J. 1998. V. 36. № 8. P. 1439–1446.
- 28. Sykes R.I., and Henn D.S. // J. of Atmosph. Sci. 1989. V. 46. № 8. P. 1106–1118.
- 29. Robins R.E., and Delisi D.P. // AIAA J. 1990. V. 28. № 4. P. 661–669.
- 30. Miake-Lye R.C., Martinez-Sanchez M., Brown R.C. and Kolb C.E. // J. of Aircraft. 1993. V. 30. № 4. P. 467–479.
- 31. Quackenbush T.R., Teske R.E. and Bilanin A.J. Computation of wake/exhaust mixing downstream of advanced transport aircraft // AIAA Paper № 93–2944, July 1993.
- 32. Appleman H. // Bulletin of American Meteorological Society. 1953. V. 34. № 1. P. 14–20.
- 33. Матвеев Л.Т. // Метеорология и гидрология. 1959. № 3. С. 3–9.
- 34. Мазин И.П. // Изв. РАН. Сер. ФАО. 1996. Т. 32. № 1. С. 5-18.

Kucherov A.N. Clearing channel in contrail.

- Iribarne J.V., Godson W.L. Atmosph. Thermodynam. Boston (USA): Reidel, 1981. 259 p. (Second revision edition).
- 36. Кучеров А.Н., Маркелов А.П., Семенов А.А., Шустов А.В. Влияние условий полета и параметров выхлопного газа на начальные параметры конденсационного следа // Труды 5-го Международного симпозиума «Авиационные технологии XXI века». Секция 1.1. С. 382–389, 17–22 августа 1999 г., Жуковский, Россия. сб. рус. яз. / Kucherov A.N., Markelov A.P., Semenov A.A., Shustov A.V. Initial contrail parameters dependence on flight conditions and parameters of exhaust gas // Proceedings of V International Symposium «New Aviation Technology of XXI century», Section 1.1. Р. 382–389. August 17–22 1999, Zhukovsky, Russia. compact disk, eng. lang.
- 37. Karcher B., Peter Th., Biermann U.M.//J. Atmosph. Science. 1996. V. 53. № 21. P. 3066–3083.
- 38. Васильев Л.Е., Попов С.И., Свищев Г.П. // Техника Воздушного Флота. 1994. № 1–2. С. 14–17.
- 39. Абрамович Г.Н., Гиршович Г.А., Крашенников С.Ю., Секундов А.Н., Смирнова И.П. Теория турбулентных струй. М.: Наука, 1984. 716 с.
- 40. Зуев В.Е., Копытин Ю.Д., Кузиковский А.В. Нелинейные оптические эффекты в аэрозолях. Новосибирск: Наука, 1980. 116 с.
- Волковицкий О.А., Семенов Л.П., Седунов Ю.С. Распространение интенсивного лазерного излучения в облаках. Л.: Гидрометеоиздат, 1982. 312 с.
- 42. Зуев В.Е., Землянов А.А., Копытин Ю.Д., Кузиковский А.В. Мощное лазерное излучение в атмосферном аэрозоле. Новосибирск: Наука, 1984. 223 с.
- 43. Зуев В.Е., Землянов А.А., Копытин Ю.Д. Нелинейная оптика атмосферы. Л.: Гидрометеоиздат, 1989. 256 с.
- 44. Кучеров А.Н. // Оптика атмосферы и океана. 1994. Т. 7. № 10. С. 1379–1387.
- 45. *Кучеров А.Н.* // Квантовая электроника. 1995. Т. 22. № 3. С. 253–257.
- 46. Lax M., Agrawal G.P., et al. // J. of the Optical Society of America. 1985. V. 2. № 5. P. 731–742.
- 47. Елкин Н.Н., Напартович А.П. Прикладная оптика лазеров. М.: ЦНИИатоминформ, 1989.
- 48. Кучеров А.Н., Устинов Е.В. // ИФЖ. 1990. Т. 58. № 1. С. 35-42.
- 49. Кучеров А.Н. // ТВТ. 1991. Т. 29. № 1. С. 144–152.
- 50. Glickler S.L. // Applied Optics. 1971. V. 10. № 3. P. 644–650.
- 51. MacKenzie A.R., Kulmala M, Laaksonen A., and Vesala T. // J. of Geophys. Rese. 1995. V. 100. № D6. P. 11275–11288.
- 52. Kucherov A.N. Sublimation and vaporization of an ice aerosol particle in the form of thin cylinder by laser radiation // Intern. J. of Heat and Mass Transfer. 2000 (accepted to print, October 1999).
- 53. Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 660 с.

Brief review of the papers referred to gas-dynamical, physical-chemical and optical properties of condensation trails behind high-altitude aircraft are done. The possibilities of clearing channel creation by laser beam for remote sounding of exhaust jet axis neighborhood with maximal concentration of harmful emissions are estimated.