СРОЧНЫЕ СООБЩЕНИЯ

УДК 621.373.826.038

П.П. Гейко, А.И. Гусамов, В.М. Петров, Ю.М. Андреев

КОНВЕРСИЯ ИЗЛУЧЕНИЯ СО2-ЛАЗЕРА в ZnGeP2 в ДАЛЬНЮЮ ИНФРАКРАСНУЮ ОБЛАСТЬ

Институт оптического мониторинга СО РАН, Томск

Поступила в редакцию 29.03.99 г.

Принята к печати 30.03.99 г.

На основании систематизированных данных о линейных оптических свойствах монокристаллов ZnGeP₂ впервые проанализированы все возможности преобразования излучения CO₂-лазеров в дальнюю ИК- и CBЧ-области. Установлены коэффициенты дисперсионных уравнений Сельмейера в дальнем ИК-диапазоне. Вычислены кривые синхронизма и угловые ширины синхронизма для генерации прямой и обратной волн. Указана принципиальная возможность применения преобразованного излучения для контроля содержания HF, NH₃, HCl, HOCl, OH и HBr в газовых смесях.

Как известно, дальний инфракрасный (ДИК) или субмиллиметровый диапазон содержит разрешенные вращательные спектры поглощения многих молекулярных газовых компонент атмосферы и чрезвычайно привлекателен для газоанализа, спектроскопии дипольных и неполярных жидкостей, твердых тел. С другой стороны, долгие годы существует проблема создания перестраиваемых узкополосных источников излучения этого диапазона с достаточной выходной мощностью. Газовые лазеры ДИКдиапазона излучают лишь на отдельных фиксированных длинах волн. С помощью нескольких типов очень сложных в техническом отношении ламп обратной волны (ЛОВ) удается перекрыть диапазон 0,2-10 мм при малой (0,5-40 мВт) выходной мощности излучения (0,5-40 мВт), однако это не решает все существующие проблемы. Кроме того, для практической реализации ЛОВ спектрофотометров необходимы дополнительные устройства управления и контроля амплитуды, фазы, поляризации излучения, определения спектральных параметров излучения, а также высокочувствительные детекторы. Как следствие, спектрофотометры на основе этих источников до сих пор являются уникальными устройствами лабораторного типа и имеют огромную стоимость.

В 1972 г. в работе [1] впервые сообщено о генерации перестраиваемого узкополосного, $\Delta v = 10^{-3}$, излучения диапазона 70–110 мкм с выходной мощностью до 1,7 мкВт методами нелинейной оптики с выполнением условий фазового синхронизма. В монокристалле ZnGeP₂ смешивалось излучение двух дискретно перестраиваемых по частоте CO₂лазеров. Следует особо отметить, что преобразование осуществлялось без традиционной для этого диапазона криогенной техники и использования сверхпроводящих магнитов. Повторение этого эксперимента позволило получить импульсы ДИК-излучения с пиковой мощностью свыше 1 Вт [2, 3].

Такой источник излучения имеет ряд отличительных особенностей. Во-первых, он дает возможность плотного, с шагом до 10^{-3} см⁻¹, перекрытия всего ДИК-диапазона линиями излучения на разностной частоте двух СО₂-лазеров низкого давления или гибридных СО₂-лазеров. Во-вторых, не требует дополнительных устройств для формирования и контроля спектральной ширины линий излучения: она

представляет собой в $\sqrt{2}$ раз уширенную линию излучения лазеров, которая, в свою очередь, определена физическими параметрами лазеров и равна ~2 $\cdot 10^{-3}$ см⁻¹ для лазеров без селекции частоты. Эта ширина может быть уменьшена до 10^{-6} см⁻¹ при применении средств стабилизации амплитуды и частоты излучения лазеров, селекции мод излучения [4]. В-третьих, не требует специальных устройств для контроля спектрального положения линий излучения, так как они хорошо известны для лазеров указанных типов и легко контролируются с помощью дифракционной решетки и обыкновенных шаговых двигателей и, при необходимости, пьезокорректором. В совокупности такой источник субмиллиметрового диапазона и спектрофотометры на его основе представляются как простые, относительно дешевые и надежные устройства.

Несмотря на привлекательность, рассматриваемый источник субмиллиметрового излучения является практически не изученным устройством ни в теоретическом, ни в экспериментальном плане.

Целью данной работы являются систематизация имеющихся данных об оптических свойствах кристаллов ZnGeP₂ в средней ИК- и ДИК-областях спектра, проведение оценок возможностей реализованного ранее и всех других допустимых типов преобразователей частоты CO₂лазеров в ДИК-диапазон.

Действительная и мнимая части диэлектрической проницаемости монокристаллов ZnGeP₂ определялись для обыкновенной и необыкновенной волн ИК- и СВЧизлучения по стандартной процедуре из данных о коэффициентах пропускания и отражения 405-мкм пластинки ZnGeP₂. В субмиллиметровой области использовался ЛОВспектрометр «Эпсилон» [5]. Спектральные зависимости показателей преломления для обыкновенной (о) и необыкновенной (е) волн в среднем и дальнем ИК-диапазонах аппроксимированы дисперсионными уравнениями Сельмейера вида

$$n_{o,e}^{2} = A_{o,e} + B_{o,e} \lambda^{2} / (\lambda^{2} - C_{o,e}) + D_{o,e} \lambda^{2} / (\lambda^{2} - E_{o,e})$$

где λ выражено в мкм.

Установленные нами для ДИК и полученные в работе [6] для ИК-диапазонов константы Сельмейера приведены в табл. 1. Типичные зависимости коэффициентов поглощения для ИК-области приведены в [3], а для ДИК – на рис. 1.

Таблица 1

Константы уравнений Сельмейера для ИК- и ДИК-диапазонов

••			-			
ZnGeP ₂		À	В	С	D	Ε
ИК	0	4,5069	5,2334	0,1343	1,7367	750
(1-12 мкм)	e	4,6613	5,3153	0,1430	1,6982	750
ДИК	0	10,4810	0,9340	1811,0	0	-
(0,1-8) мкм	e	11,1790	0,4330	2952,0	0	-
Коэффициент поглощения, см ⁻¹	3,0 2,5 1,5 1,0),5		Длина во		 	0

Рис. 1. Спектральная зависимость коэффициентов поглощения для обыкновенной (1) и необыкновенной (2) волн в дальнем ИК-диапазоне

Из рассчитанных нами кривых фазового синхронизма (рис. 2) следует возможность реализации четырех типов коллинеарного взаимодействия:

$$\mathbf{k}_{1e} - \mathbf{k}_{2o} = \mathbf{k}_{3o}, \quad \mathbf{k}_{1e} - \mathbf{k}_{2o} = \mathbf{k}_{3e};$$

 $\mathbf{k}_{10} - \mathbf{k}_{2e} = \mathbf{k}_{3e}, \quad \mathbf{k}_{10} - \mathbf{k}_{2e} = \mathbf{k}_{3o}.$

Здесь \mathbf{k}_i – волновые векторы излучения накачки (i = 1, 2) и генерируемого излучения (i = 3). Первые два описывают генерацию прямых, а вторые два – обратных волн ДИК-излучения.

Рис. 2. Кривые синхронизма для генерации разностных частот излучения CO₂ для взаимодействий e-o-e(l) и e-o-o(c) прямых, а также o-e-o(d) и o-e-e(d) обратных волн накачки; спектральные зависимости угловых ширин синхронизма для взаимодействий e-o-e и o-e-o(5, 6)

Рассматриваемый в этой работе кристалл ZnGeP2 то-

чечной группы симметрии $\overline{4}2m$ обладает третьим по величине коэффициентом квадратичной нелинейной восприимчивости $d_{14} = d_{36} = 7,5 \cdot 10^{-11}$ м/В из всех известных кристаллов. Поскольку в исследуемом трехчастотном взаимодействии между излучением накачки и генерируемой волной лежит фундаментальная полоса поглощения кристалла, то условия симметрии Клейнмана оказываются нарушенными. При этом эффективные коэффициенты квадратичной нелинейной восприимчивости определяются: $d_{3\phi} = -d_{36} \sin \theta \sin 2\phi$ и $d_{3\phi} = (d_{14} + d_{36}) \sin \theta \cos \theta \cos 2\phi =$ $= d_{14} \sin 2\theta \cos 2\phi - для первых двух типов взаимодействий;$ $<math>d_{3\phi} = d_{14} \sin 2\theta \cos 2\phi$ и $d_{3\phi} = -d_{14} \sin \theta \sin 2\phi - для генерации$ $обратных волн. Здесь <math>\theta$ – угол между оптической осью и волновыми векторами накачки; ϕ – угол между кристаллографической плоскостью XZ и плоскостью kZ.

В приближении плоских волн и заданного поля накачки эффективности преобразования по мощности оценивались по следующей формуле:

$$\eta = \frac{P_3}{\sqrt{P_1 P_2}} = \frac{4\pi d_{s\phi}^2}{\varepsilon_0 c n_1 n_2 n_3} \frac{\sqrt{P_1 P_2} L^2}{(r_1^2 + r_1^2) \lambda_3^2} \sin c^2 (\Delta k L/2) T_1 T_2 T_3 K,$$

где P_1 , P_2 – мощности накачки; r_1 и r_2 – эффективные радиусы пучков накачки по уровню 1/2; L – длина кристалла; Δk – фазовая расстройка взаимодействующих волн; $T_i = 4n_i / (n_i + 1)^2$ – пропускание входной и выходной граней кристалла при нормальном падении с учетом френелевских потерь;

$$K = e^{-\alpha_3 L} \frac{1 + e^{-\Delta \alpha L} - 2e^{(-\Delta \alpha L)/2} \cos(\Delta k L)}{(\Delta k L + 0.5 \Delta \alpha L)},$$

где $\Delta \alpha = \alpha_1 + \alpha_2 - \alpha_3$. Для исключения диафрагменного апертурного эффекта и повышения эффективности преобразования радиусов для пучков r_1 и r_2 должно быть выполнено условие $r_1 = r_2 > L_{\rho}/\pi$ (ρ – угол двулучепреломления). Так как угловые ширины синхронизма (см. рис. 2) составляют единицы градусов и превышают разницу углов синхронизма, то одновременно должны генерироваться как обыкновенная, так и необыкновенная ДИК-волны. Это справедливо для обеих пар взаимодействий. При слабом истощении накачки данный эффект увеличивает общую эффективность преобразования.

При использовании субнаносекундных лазеров и лазеров с синхронизацией мод достижима эффективность преобразования до 2,5% (плотность мощности накачки 10^9 BT/cm²). Однако, как известно, уменьшение длительности импульса приводит к увеличению спектральной ширины излучения и сохранить ее на уровне 10^{-3} см⁻¹ в этом случае невозможно.

Для ТЕА-лазеров и непрерывного излучения эффективность может составить до 0,1 и $5 \cdot 10^{-4}$ % соответственно (плотность мощности накачки $5 \cdot 10^7$ и $2 \cdot 10^5$ Вт/см²).

Дальнейшее повышение эффективности ограничено разогревом кристалла, формированием тепловой линзы с последующим пробоем поверхности. Оценки проведены для коротковолновой части субмиллиметровой области спектра. Когда длина волны генерируемой разностной частоты становится сравнимой с радиусами пучков накачки r_1 или r_2 , дифракционные эффекты усиливаются и приближение плоских волн теряет смысл.

Применимость рассматриваемого источника ДИКизлучения для анализа состава газовых смесей иллюстрируется рис. 3, на котором представлена полученная с помощью атласа HITRAN-96 спектральная зависимость коэффициентов поглощения некоторых газов в ДИК-области. В табл. 2, носящей иллюстративный характер, приведены некоторые совпадения разностных частот CO₂-лазеров и интенсивных линий поглощения газов.

Рис. 3. Спектральная зависимость коэффициентов поглощения для NH₃ (сплошная), HCl (штриховая), HBr (пунктирная) и OH (штрихпунктирная) при концентрациях 1 ppm

Таблица 2

Совпадение частот преобразованного излучения СО₂-лазеров и линий поглощения

Комбинация линий СО ₂ -лазеров	Чистота ДИК- излучения, v, см ⁻¹	Центр ли- ний погло- щения, v, см ⁻¹	$\Delta v, cm^{-1}$	Интенсив- ность линий, <u>см</u> молек. · 10 ²⁰	Газ
9P(2)-9P(46)	41,109	41,111	0,002	98,80	HF
9R(32)–9P(44)	62,576	62,584	0,008	24,92	HCl
9R(50)–9P(32)	59,313	59,312	0,001	1,72	HOCl
9P(18) - 9R(4)	83,892	83,869	0,023	76,1	OH
9P(40)-10P(38)	98,365	98,348	0,015	44,7	NH_3
9R(8) - 10R(12)	99,915	99,915	0,000	12,10	HBr

При разработке реальной спектральной аппаратуры и газоанализаторов атмосферы следует учесть сильную интерференцию со стороны паров H₂O и O₂, значительно уменьшающуюся при переходе в CBЧ-диапазон.

Представляется интересным также суммирование в кристаллах ZnGeP₂ излучения CO₂-лазеров и CBЧизлучения, дающее возможность прецизионной отстройки частоты преобразованного излучения от спектрального жестко фиксированного положения линий излучения CO₂-лазеров и работы в режиме быстрого свиппирования преобразованной частоты. Возможность осуществления этого преобразования подтверждается запуском генератора разностной частоты.

Таким образом, на основании сводных данных о линейных оптических свойствах кристаллов ZnGeP₂ определены уравнения Сельмейера для ДИК-области спектра. С их помощью впервые предсказана возможность преобразования излучения CO₂-лазеров в ДИК-область с выполнением условий синхронизма для четырех типов взаимодействий, позволяющих довести эффективность преобразований до уровня единиц процентов.

- 1. Boyd G.D., Bridges T.J., and Patel C.K.N. // Appl. Phys. 1972. V. 21. N 11. P. 553–555.
- Аполлонов В.В., Грибенюков А.И., Короткова В.В., Суздальцев А.Г., Шакир Ю.А. // Квантовая электроника. 1996. Т. 23. N 6. C. 483–484.
- Andreev Yu.M., Apollonov V.V., Shakir Yu.A., Verozubova G.A., and Gribenyukov A.I. // J. of the Korean Physical Society. 1998. V. 33. P. 320–325.
- Андреев Ю.Н., Карапузиков А.И., Разенков И.А., Шелевой К.Д., Шерстов И.А. // 1-я Междунар. конф. «Контроль и реабилитация окружающей среды»: Тезисы докл. Томск: Изд-во «Спектр», 1998. С. 15–18.
- 5. Войцеховский В.В., Волков А.А., Командин Г.А., Шакир Ю.А. // Физика твердого тела. 1995. Т. 37. N 7. С. 2199–2202.
- 6. Bhar C., Ghosh G. // J. Opt. Soc. Am. 1979. V. 69. N 5. P. 730-733.

P.P Geiko, A.I. Gusamov, V.M. Petrov, Yu.M. Andreev. Conversion of CO₂-laser Radiation into Far IR Region Using ZnGeP₂ Crystal.

All possibilities of CO_2 -laser frequency conversion into FIR and SHF ranges have been analyzed on the basis of systematized data on linear optical properties of ZnGeP₂ single crystals for the first time. The coefficients of dispersion Sellmeier equations for FIR range have been determined. Phase-matching curves and phase-matching angular widths for both direct and backward waves have been calculated. A principal possibility of application of the emission converted is shown to control HF, NH₃, HCl, HOCl, OH, and HBr content in gas mixtures.