СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УДК 535.343.4

В.В. Лазарев, Т.М. Петрова, Л.Н. Синица, Кинг-Ши Цу, Я-Ксианг Хан, Лу-Юан Хао

СПЕКТР ПОГЛОЩЕНИЯ HD¹⁶О В ОБЛАСТИ 0,7 мкм

Исследован спектр поглощения паров HD¹⁶O в области 12700–12900 см⁻¹. Измерения проведены с помощью оптикоакустического спектрометра на основе лазера на титане с сапфиром с пороговой чувствительностью к поглощению 10^{-8} см⁻¹. Впервые идентифицированы линии поглощения полосы $5v_1$ HD¹⁶O. Определены 54 колебательно-вращательных уровня высоковозбужденного колебательного состояния (500) HD¹⁶O с погрешностью от 0,0003 до 0,0066 см⁻¹. Решена обратная задача, найдены вращательные и центробежные постоянные подгонкой по методу наименьших квадратов.

Исследования внутримолекурярных взаимодействий молекулы водяного пара требуют знания энергетической структуры ее изотопных модификаций, в частности несимметричного изотопа HDO. Спектры поглощения HD16O важны и для атмосферных приложений, поскольку изотопные модификации воды могут вносить вклад в атмосферное поглощение, особенно в окнах и микроокнах прозрачности, влиять на распространение лазерного излучения через атмосферу [3]. Колебательно-вращательная структура энергетического спектра HD16O изучена слабо, особенно в области высоких энергий. В литературе до последнего времени имелись данные только о 15 колебательных состояниях (соответствующие литературные ссылки имеются в [1]). К ним можно добавить недавно опубликованную работу [2], в которой исследованы полосы 3v3 и 4v3. Недостаток данных в значительной степени ограничивает возможности изучения влияния внутримолекулярных взаимодействий на формирование спектра молекулы, особенно в коротковолновой области.

В данной статье представлены результаты анализа спектра поглощения ${\rm HD}^{16}{\rm O}$ в области 0,7 мкм.

Спектр поглощения смеси $H_2^{16}O$, $D_2^{16}O$ и $HD^{16}O$ зарегистрирован с помощью оптико-акустического спектрометра на основе одномодового перестраиваемого лазера на титане с сапфиром Coherent 899-29 с шириной линии генерации 50 кГц и шагом перестройки 50 МГц в диапазоне 12700–12900 см⁻¹. Спектрометр позволяет исследовать слабые линии поглощения в диапазоне 11300–13000 см⁻¹ и имеет пороговую чувствительность по коэффициенту поглощения 10⁻⁸ см⁻¹, что соответствует 1%-му ослаблению луча в 10-км кювете для классической спектрофотометрии. Подробное описание спектрометра приведено в работе [4].

Измерения проводились при давлении смеси $(H_2^{16}O, D_2^{16}O, HD^{16}O)$ 17 Торр и температуре 300 К. Смесь приготовлялась таким образом, что относительное содержание HD¹⁶O составляло 50%, $H_2^{16}O$,

и D₂¹⁶O – по 25%. Зарегистрированный спектр содержит около 200 линий поглощения.

В исследуемом диапазоне были найдены 23 линии поглощения основной изотопной модификации воды, эти линии были идентифицированы по данным работы [6] и служили в дальнейшем реперными линиями, относительно которых определялись центры линий поглощения $HD^{16}O$. Линии поглощения $D_2^{16}O$ не были обнаружены, что в целом соответствут представлению о том, что переходы данной молекулы в ближней ИК- и видимой области имеют малую вероятность.

Для идентификации линий была использована специальная программа – экспертная система, использующая методы теории распознавания образов [5]. Применение методов распознавания значительно облегчило и упростило процедуру идентификации линий поглощения в спектре. При этом использовались метод комбинационных разностей нижнего состояния и оценки вращательных и центробежных постоянных.

Процедура идентификации линий поглощения включала:

a) оценку положений центров линий поглощения и их относительных интенсивностей,

б) использование метода комбинационных разностей,

в) подгонку вращательных и центробежных постоянных с последующими предсказательными расчетами параметров линий поглощения (центры линий и их интенсивности) с большими значениями вращательного квантового числа J.

В результате анализа спектра проинтерпретировано 120 спектральных линий (табл. 1) полосы $5v_1 \text{ HD}^{16}\text{O}$, найдено 54 уровня энергии, соответствующих $J \le 9$ и $K_a \le 4$ (табл. 2). При этом использовались только те линии поглощения HD^{16}O , центры которых не перекрываются с линиями основной изотопной модификации.

Таблица 1

Спектр поглощения HD¹⁶O в области 0,7 мкм

Τа	б	л	и	п	а	2

Уровни энергии колебательно-вращательного состояния ((500)
HD16O	

Частота,	<i>I' K' K'</i>	<i>I</i> " <i>K</i> " <i>K</i> "	Частота,	V K' K'	I'' K'' K''		,	•		•		1
\mathbf{CM}^{-1}	$J \Lambda_a \Lambda_c$	$J \Lambda_a \Lambda_c$	см ⁻¹	$J \Lambda_a \Lambda_c$	$J \Lambda_a \Lambda_c$	IKK	$F = c M^{-1}$	r.m.s.,	N	δ,	Е _{рас.} , см ⁻¹	$\Lambda \alpha u^{-1}$
12720,5472	212	313	12813,7465	422	321	$\sigma R_a R_c$	L_{3KC} , CM	10 ⁻³ см ⁻¹	14	10 ⁻³ см ⁻¹	[7]	Д, СМ
12721.2192	404	413	_"_	505	414	000	12767,1259	-	1	2,5	12766,7205	0,4053
12725 8531	643	642	12816 8857	413	312	101	12781,2144	3,53	3	-4,3	12780,8005	0,4141
12728 1255	634	633	12817 3020	533	432	111	12795,0320	2,24	2	-7,6	12794,6343	0,3975
12720,1255	110	211	12817,5020	535	432	110	12797,0437	3,21	3	-	12796,7760	0,2676
12/30,854/	110	211	12817,6086	532	431	202	12809,1243	-	1	-14,3	12808,6972	0,4268
12731,7035	633	634	12818,1152	515	414	212	12820.9389	2.47	4	-36.1	12820.5610	0.3779
12734,8795	541	542	12819,4807	414	303	211	12827 7078	4 79	2	63	12827 2926	0.4150
12735,0413	101	202	12819,5848	643	542	221	12868 9975	2.12	2	17	12868 6219	0.3750
12736,9029	111	212	12819,7789	524	423	221	12860 2586	1.42	2	1.22	12000,0217	0,3750
12738 3730	533	532	12819 9789	505	404	220	12809,2380	1,42	2	1,25	12808,8778	0,3809
12739 6175	532	533	12821 6832	817	726	303	12850,3312	1,64	2	-8,2	12849,9071	0,4238
12737,0173	110	4 4 1	12021,0032	617	720 515	313	12859,5276	0,93	2	3,1	12859,1213	0,4062
12/42,3111	440	441	12821,8539	000	515	312	12873,1507	3,21	3	-1,6	12872,7246	0,4258
12745,3351	423	422	12822,9371	523	422	322	12911,1681	1,31	3	14,8	12910,7847	0,3828
12746,3279	432	431	12824,1165	634	533	321	12912,4295	3,09	4	11,0	12912,0414	0,3887
12746,6392	431	432	12824,3441	515	404	331	12985,4424	4,46	2	-8,2	12985,1068	0,3359
12748,7137	101	110	12824,5497	616	515	330	12985,4552	6,67	2	-3,1	12985,1236	0,3311
12751 1344	523	524	12824 8092	633	532	404	12904,2052	2,45	3	-7,1	12903,7797	0,4258
12751,1311	000	101	12824 0400	514	413	414	12910.8099	0.98	2	12.5	12910.3966	0.4131
12751,0177	000	101	12024,9499	514	413	413	12933 3468	4 72	3	0.1	12932 9160	0.4307
12/52,3956	331	330	12825,7815	606	505	123	12955,5100	3 70	1	9,6	12966 7795	0,1507
12752,4248	330	331	12826,2421	625	524	423	12070,9002	2.02	т 2	5.2	12070 4087	0,3750
12753,7653	422	423	12828,2117	707	616	422	12970,8092	2,02	2	5,5	12970,4087	0,4004
12754,1048	322	321	12828,4661	616	505	432	13042,0033	2,06	2	-6,0	13041,6631	0,3398
12754,7511	212	211	12829,3679	735	634	431	13042,1287	2,27	2	-6,0	13041,7843	0,3447
12757,0433	321	322	12829,7871	717	616	440	13144,6355	4,73	2	-0,6	13144,3690	0,2666
12759,7305	221	220	12830,4440	624	523	505	12970,1319	3,22	2	-5,0	12969,7109	0,4209
12760,3343	220	221	12830,5151	/0/	606	515	12974,4989	1,44	2	8,7	12974,0855	0,4131
12/62,53/9		110	12831,1428	015	514	514	13007,9319	1,61	2	-2,5	13007,4912	0,4404
12760 5857	211	212	12831,2312	720	606	524	13036,8177	3,07	2	8,9	13036,4174	0,4004
12709,3837	624	615	12832,0930	/ 1 / 8 0 8	717	523	13044.7720	0.96	3	4.4	13044.3629	0.4092
12772 7615	312	313	12833 8797	818	717	533	13112,7855	2.71	3	-0.8	13112,4443	0.3408
12777.9519	413	322	12834.2731	808	707	532	13113 2847	1 13	3	_1.8	13112,1115	0.3574
12781,2188	101	000	12834,7930	827	726	5 4 1	12215 1224	1,15	2	11.0	12214 8410	0,3574
12781,5383	110	101	12835,1602	818	707	541	13213,1234	1,21	2	11,8	13214,8410	0,2822
12781,8233	312	303	12835,5137	716	615	606	13047,7232	4,43	2	50,0	1304/,3112	0,4121
12783,1962	413	404	12836,5902	725	624	616	13050,4133	1,19	2	8,7	13050,0106	0,4023
12785,9842	514	505	12836,3781	909	818	615	13096,3747	4,34	2	-2,6	13095,9294	0,4453
12791,1310	212	111	12836,4990	221	110	625	13119,8846	5,99	2	2,1	13119,4764	0,4082
12792,2027	303	212	12836,8447	919	818	624	13134,4373	1,58	2	-7,1	13134,0159	0,4219
12793,6161	202	101	12836,9694	928	827	634	13197,7857	3,39	2	-9,7	13197,4366	0,3496
12795,0477	111	000	12837,0625	909	808	633	13199.2186	0.54	2	-11.6	13198.8497	0.3691
12795,2066	211	110	12837,5413	919	808	6.4.3	13200 8256	1.01	2	0.4	12200 5220	0.2018
12/95,96/9	321	312	12838,1977	817	/10	045	13277,8250	1,91	2	-0,4	13277,3237	0,3010
12802 2423	313	212	12839,4480	826	111	/0/	13136,8286	1,22	2	-6,9	13136,4148	0,4131
12802,2423	615	524	12839,0437	320	211	717	13138,4053	2,48	2	1,2	13137,9959	0,4092
12803.0735	220	211	12848 3602	928	817	716	13198,0171	3,76	2	-8,5	13197,5652	0,4521
12803,1554	321	220	12850.7111	423	312	726	13216,1103	3,49	2	-5,2	13215,6969	0,4131
12803.8135	404	313	12851.3158	827	716	725	13239 5663	_	1	16	13239 1408	0.4258
12804,1597	303	202	12853,6066	726	615	725	12207,5005	5 1	2	1,0	13239,1400	0,7230
12805,4342	212	101	12853,8311	524	413	/ 3 5	13296,8768	5,1	2	1,5	13296,5349	0,3319
12806,9617	312	211	12854,3049	321	212	808	13237,4361	1,53	2	-7,7	13237,0428	0,3936
12808,9775	432	331	12854,6544	625	514	818	13238,3235	1,86	2	-1,2	13237,9319	0,3916
12810,4180	414	313	12876,1688	331	220	817	13312,1130	4,45	2	1,8	13311,6632	0,498
12810,7975	423	414	12876,5356	330	221	827	13325 2269	6.55	2	-21.0	13324 8104	0.4160
12811,7810	423	322	12886,7420	431	322	021	12250 7672	0,00	1	12.6	12250 2245	0.4414
12812,7936	541	440	12888,3894	523	414	820	13339,/0/2	_		-13,0	10009,0200	0,4414
12812,8783	404	303	12890,9482	533	422	909	13349,5818	3,46	2	-9,8	13349,1925	0,3896
12813,1377	716	625	12893,3220	135	624	919	13350,0545	2,63	2	7,5	13349,6646	0,3896
12813,3334	313	202	12890,2428	352	423	928	13446,9196	3,66	2	-9,1	13446,5110	0,4086
		l	12911,00/1	440	331		1	I C	I I	1	l i	I

Решение обратной задачи по определению вращательных и центробежных постоянных проводилось на основе гамильтониана Уотсона, что соответствует модели изолированного колебательного состояния:

$$\begin{split} H &= E_{v} + \left(A^{v} - \frac{B^{v} + C^{v}}{2}\right)J_{z}^{2} + \frac{B^{v} + C^{v}}{2}J^{2} + \frac{B^{v} - C^{v}}{2}J_{xy}^{2} - \\ &- \Delta_{k}^{v}J_{z}^{4} - \Delta_{jk}^{v}J_{z}^{2}J^{2} - \Delta_{j}^{v}J^{4} - \delta_{k}^{v}\{J_{z}^{2}, J_{xy}^{2}\} - 2\delta_{j}^{v}J_{xy}^{2}J^{2} + \\ &+ H_{k}^{v}J_{z}^{6} + H_{kj}^{v}J_{z}^{4}J^{2} + \dots; \\ &J^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}, \ J_{xy}^{2} = J_{x}^{2} - J_{y}^{2}; \{A, B\} = AB + BA \,, \end{split}$$

где J_x , J_y и J_z – операторы углового момента; E_v – колебательная энергия; A, B, C – вращательные, Δ_k , Δ_{jk} , Δ_{j} , δ_k , δ_j ... – центробежные постоянные.

Некоторые уровни оказались возмущенными и были исключены из процедуры подгонки параметров гамильтониана (например, уровень [110]). Мы предполагаем, что эти уровни возмущены за счет сильных резонансных взаимодействий состояния (500) с состояниями (420), (340), (260), (071), которые не были учтены в наших расчетах. Полученные в результате решения обратной задачи параметры гамильтониана, а также 68%-е доверительные интервалы для них приведены в табл. 3.

Из табл. 2 видно, что согласие вычисленных и найденных из спектра энергетических уровней (5-й столбец таблицы) вполне удовлетворительное – стандартное отклонение составляет только 0,013 см⁻¹. В целом воспроизведение экспериментальных уровней характеризуется следующими соотношениями:

Таблица 3

Центр полосы, вращательные и центробежные постоянные колебательного состояния (500) молекулы HD¹⁶O, см⁻¹

Параметр	Величина	Параметр	Величина		
Ε	12767,1201(60)	$\Delta_{ik} 10^3$	2,299(30)		
Α	22,0137(17)	$\Delta_i 10^4$	3,275(28)		
В	8,18388(57)	$\delta_k 10^3$	2,465(43)		
С	5,90020(46)	$\delta_i 10^4$	1,018(28)		
$\Delta_k 10^2$	1,1502(94)	$H_k 10^4$	1,88		

δ < 0,005 23,7% всех уровней,

```
0{,}005 \le \delta < 0{,}01 \quad 25{,}4\% \; ,
```

```
0,010 \le \delta < 0,03 37,3%,
```

```
0,030 \le \delta < 0,05 13,6%, где \delta = |E_{\rm pac} - E_{_{\rm 3KC}}|.
Центр полосы определен по двум переходам на
```

уровень [000] и составил ν_o = 12767,1259 \pm 0,0060 см $^{-1}.$

Институт оптики атмосферы СО РАН, Томск Университит науки и технологии Китая, г. Хефей

В последнее время появились высокоточные расчеты Партриджа и Швенке [7] энергетической структуры и вероятностей переходов для изотопических модификаций воды. Интересно провести сравнение колебательно-вращательных уровней энергии состояния (500), полученных в данной работе, с уровнями, предсказанными в [7]. Вычисления в [7] проведены вариационным методом на основе расчета ab initio функции потенциальной энергии с ее дальнейшим уточнением по данным банка спектральных данных HITRAN-92. В [7] сообщается, что разность между данными по положению центров линий, представленными в атласе HITRAN и рассчитанными авторами, составляла в среднем 0,021 см⁻¹. В табл. 2 в последнем столбце приведены разности между колебательно-вращательными уровнями, рассчитанными в [7] и определенными нами из спектра. Для ряда уровней эта разность достигает 0,4 см⁻¹, причем расчетные значения [7] превышают экспериментальные уровни, уменьшаясь с ростом квантового числа K_a до 0,2 см⁻¹ (при $K_a = 4$). Можно предположить, что наибольший вклад в ошибку данных [7] для состояния (500) HD¹⁶O вносит ошибка расчета колебательной энергии (нулевой уровень J=0), поэтому введение соответствующей поправки к вращательным подуровням энергии (J>0) дает вполне удовлетворительное согласие с экспериментальными данными. Представленные в данной статье экспериментальные уровни энергии могут быть использованы для уточнения функции потенциальной энергии, представленной в [7].

Работа поддержана Российским фондом фундаментальных исследований (гранты N 96-03-33801 и N 96-03-10043).

Авторы выражают благодарность О.В. Науменко и А.Д. Быкову за помощь в расчетах и полезные обсуждения результатов работы. Для идентификации линий использовалась экспертная система, разработанная А.П. Щербаковым.

- 1. Bykov A.D. et al. // J. Mol. Spectrosc. 1992. V. 153. P. 197–207.
- 2. Fair J.R., Votava O., Nesbit D.J. // J. Chem. Phys. 1998. V. 108. N 1. P. 72–80.
- Зуев В.Е., Макушкин Ю.С., Пономарев Ю.Н. Современные проблемы атмосферной оптики. Спектроскопия атмосферы. Т. 3. Л.: Гидрометеоиздат, 1987. 247 с.
- 4. Lazarev V.V. et al. // SPIE. 1996. V. 3090. P. 245-248.
- 5. *Щербаков А.П. //* Оптика атмосферы и океана. 1997. Т. 10. N 8. С. 947–958.
- 6. Flaud J.-M. et al. // J. Mol. Spectrosc. 1998. V. 185. P. 211-221.
- 7. Partridge H., Schwenke D.W. //J. Chem. Phys. 1997. V. 106. N 11. P. 4618–4639.

Поступила в редакцию 4 февраля 1998 г.

V.V. Lazarev, T.M. Petrova, L.N. Sinitsa, Qing-Shi Zhu, Jia-Xiang Han, Lu-Yuan Hao. Absorption Spectrum of HD¹⁶O in 0.7 μm Region.

The absorption spectrum of HD¹⁶O has been investigated in 12700–12900 cm⁻¹ region by the photo-acoustic spectrometer based on the Ti-Sapphire at the threshold absorption sensitivity 10^{-8} cm⁻¹. The absorption lines of the $5v_1$ band of HD¹⁶O were assigned for the first time. 54 energy levels of the highly excited vibrational state (500) have been obtained with the uncertainty from 0.0003 to 0.0066 cm⁻¹. A set of the rotational and centrifugal constants has been determined.