Д.М. Кабанов, С.М. Сакерин

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ АЭРОЗОЛЬНОЙ ОПТИЧЕСКОЙ ТОЛЩИ И ВЛАГОСОДЕРЖАНИЯ АТМОСФЕРЫ ЦЕНТРАЛЬНОЙ АТЛАНТИКИ

Обсуждаются результаты исследований пространственно-временной изменчивости спектральных аэрозольных оптических толщ и интегрального влагосодержания атмосферы над океаном в 39-м рейсе НИС «Академик Мстислав Келдыш». Показано, что относительная межсуточная изменчивость аэрозольных толщ составляет около 40%, а в дневном ходе наблюдается полуденный максимум с амплитудой 15–30% относительно утренних и вечерних данных. В пространственной изменчивости приближение к континентам сопровождается трансформацией спектрального хода аэрозольных оптических толщ: его селективность возрастает из-за увеличения со держания мелкодисперсной фракции континентального аэрозоля. Следствием этого является изменение спектральной зависимости: в видимой области проявляются различия районов вблизи континентов с центральноокеаническим, а в диапазоне 1–4 мкм спектральных ход близок к нейтральному и меняется менее существенно.

Введение

В августе – сентябре 1996 г., в рамках программы 39-го рейса НИС «Академик Мстислав Келдыш» был проведен очередной цикл исследований спектральной аэрозольной оптической толщи (АОТ) τ_{λ}^{A} и общего влагосодержания (OBC) *W* атмосферы над океаном. Маршрут рейса проходил от берегов Канады в юго-восточном направлении до 29° с.п., где был организован полигон для океанологических исследований и получена основная часть данных. Атмосферноклиматические условия на полигоне характеризуются его расположением на периферии зоны тропиков и северо-восточного пассата (удаление от континента около 4000 км; температура 25,5–27,5°; влажность 15,4–19,6 г/м³; скорость ветра 0,3–8,5 м/с). Спустя десять дней работы на полигоне движение было продолжено в северо-восточном направлении через Ла-Манш на Калининград. Измерения были начаты во время стоянки в п. Галифакс и окончены в Северном море. Отсутствие сплошной облачности позволило провести цикл непрерывных дневных наблюдений в течение 25 дней.

Рис. 1. Изменение ОВС, АОТ атмосферы и параметра α за период 39-го рейса

Результаты исследований аэрозольной оптической толщи и влагосодержания атмосферы 1461

В исследованиях АОТ и ОВС атмосферы использовался многоволновой солнечный фотометр [1] с тринадцатью светофильтрами, настроенными на «окна прозрачности» атмосферы. В отличие от прежних работ анализ АОТ был проведен в более широком спектральном диапазоне 0,37-4,0 мкм, для чего потребовалась разработка новой методики учета функций пропускания газовых компонентов [2]. Заметим, что исследования АОТ над океаном в диапазоне спектра более 1 мкм практически не проводились. Статистически обеспеченные данные для этой области представлены лишь в [3-5].

Определение ОВС атмосферы осуществлялось на основе измерений пропускания солнечного излучения в области полосы поглощения 0,94 мкм по методике, рассмотренной в [6, 7]. Всего за период экспедиции было измерено 3000 спектров вертикальной прозрачности атмосферы. При анализе спектральных АОТ и ОВС атмосферы использовались среднечасовые и среднедневные результаты.

Общий характер изменения основных исследуемых характеристик за время рейса иллюстрируется на рис. 1.

АОТ атмосферы

Предварительный анализ результатов по АОТ указал на целесообразность разделения Отдельно была проанализирована атмосфера центральноданных на две группы. океанического (ЦО) района на удалении от суши более 500 ÷ 1000 км и районов вблизи континентов (ВК) – берегов Северной Америки и Европы. Заметим, что рассмотренное деление по расстоянию от суши является условным, так как состав и содержание аэрозоля в воздухе существенно зависят от типа воздушной массы, траектории ее движения и трансформации. Более определенно можно было бы выделить зону прибрежной атмосферы (до ~ 100 км), где действует дополнительный периодический механизм перемешивания континентального и морского аэрозолей, обусловленный бризовой циркуляцией. Но измерения в указанной зоне были недостаточно продолжительными.

Статистические характеристики спектральных АОТ для межсуточной изменчивости приведены в табл. 1. Здесь же указаны параметры Ангстрема α, характеризующие селективность спектрального хода АОТ в диапазоне 0,37–1,06 мкм:

$$\tau_{\lambda}^{A} = \beta \lambda^{-\alpha},\tag{1}$$

где $\beta = \tau_1^A - коэффициент мутности. Основное различие двух районов состоит в больших замут$ нениях атмосферы и селективности АОТ вблизи континентов. В коротковолновой области спектра (0,37 мкм) средние величины АОТ отличаются более чем в два раза, а для 1.06 мкм – на 25%.

λ, нм	Общие данные (д)		Районы вблизи		Центрально-океанический район				
			континентов (д)		(д)		(ч)		
	$\overset{-}{\tau}_{\lambda}^{A}$	σ_{τ}	$\stackrel{-}{\tau}_{\lambda}^{A}$	σ_{τ}	$\stackrel{-a}{\tau}_{\lambda}$	σ_{τ}	$\overset{-A}{\tau}_{\lambda}$	σ_{τ}	
369	0,118	0,068	0,186	0,077	0,084	0,036	0,083	0,037	
408	0,116	0,062	0,178	0,062	0,085	0,036	0,083	0,038	
423	0,111	0,062	0,176	0,067	0,080	0,034	0,079	0,036	
438	0,110	0,059	0,173	0,062	0,081	0,033	0,079	0,035	
484	0,100	0,050	0,153	0,054	0,077	0,031	0,076	0,032	
513	0,089	0,045	0,136	0,051	0,071	0,030	0,070	0,031	
558	0,083	0,041	0,125	0,044	0,069	0,030	0,069	0,032	
637	0,075	0,034	0,109	0,032	0,062	0,029	0,060	0,029	
671	0,069	0,031	0,099	0,027	0,058	0,027	0,056	0,028	
871	0,065	0,026	0,080	0,019	0,060	0,028	0,057	0,030	
1056	0,060	0,026	0,072	0,020	0,055	0,028	0,052	0,031	
α	0.670	0.410	1.000	0.260	0.490	0.370	0.530	0.430	

Статистические характеристики среднедневных (д) и среднечасовых (ч) τ_{A}^{A} и α для различных районов

Среднеквадратическое отклонение σ_{τ} межсуточных вариаций АОТ повторяет спектральный ход т₂, а относительная изменчивость составляет 40–50% для ЦО и 30–40% для ВК районов. Полученные данные находятся в хорошем согласии с нашими результатами 1989-1995 гг. [8, 9 и др.] и в большинстве случаев с исследованиями других авторов, обобщенных в [10, 11]

Д.М. Кабанов, С.М. Сакерин

(табл. 2). Исключение представляют данные [12, 13], которые для ЦО района, на наш взгляд, завышены. В первом случае измерения проводились северо-западнее Гибралтара, поэтому могли сказаться континентальные выносы с Пиренейского п-ова и Африки. Результаты [13] вызывают сомнение, так как полученные в этих исследованиях значения АОТ в середине Атлантики (севернее 30° с.ш.) находятся в диапазоне 0,11 ÷ 0,61 – фактически как в зоне мощных пылевых выносов. Заметим, что обобщенные данные табл. 2 не включают результаты исследований в 1991–1993 и 1982–1984 гг. – в условиях после мощных извержений вулканов Пинатубо и Эль-Чичон.

Таблица 2

Период наблюдений	N (дней)	$^{-A}$ $\tau_{0,55}$	σ_{τ}	$\bar{\alpha}$	σ_{α}	Авторы		
Центрально-океанические районы								
08-09.96	16	0,069	0,030	0,49	0,37	39-й рейс		
09-12.89	27	0,070	0,040	0,75	0,76	[8]		
1979, 1986–1990	>40	$0,07 \div 0,12$	$0,02 \div 0,10$	$0,1 \div 1$	$0,2 \div 0,45$	[10, 11]		
1985, 1988	17	$0,16 \div 0,18$	0,09	$0,56 \div 1$	$0,2 \div 0,32$	[12, 13]		
Районы вблизи континентов								
08-09.96	9	0,125	0,044	1,0	0,26	39-й рейс		
1989–1995	45	$0,06 \div 0,18$	$0,03 \div 0,16$	$0,72 \div 0,84$	_	[8, 9]		
1979, 1982	-	$0,097 \div 0,172$	$0,028 \div 0,052$	$0,2 \div 1,4$	$0,02 \div 0,2$	[11]		
1986, 1988–1990	56	$0,04 \div 0,21$	$0,02 \div 0,09$	$0,56 \div 1,17$	$0,17 \div 0,38$	[10]		

Сопоставление полученных данных с результатами других исследований

Измерения АОТ в диапазоне 2–4 мкм были проведены в меньшем объеме (13 + 6 измерительных дней), поэтому статистические характеристики для соответствующих периодов были рассчитаны отдельно (рис. 2).

Рис. 2. Спектральный ход средних значений АОТ и σ_{τ} в двух районах исследований и трансформация τ_{λ}^{A} при удалении от континента с 26 по 30 августа

В коротковолновой части спектра (0,37–1,06 мкм) средние значения АОТ и σ_{τ} практически совпадают с данными полных массивов (см. табл. 1). Что касается параметра Ангстрема α , то для ЦО района он составил 0,49, а в ВК имеет промежуточное значение между чисто морской и континентальной ($\alpha = 1,3$) атмосферой. Причем погрешность аппроксимации спектрального хода АОТ в виде выражения (1) в среднем составляет 10%.

В области более 1 мкм степенной спад АОТ (1) нарушается и, в среднем, наблюдается небольшое увеличение τ_{λ}^{A} со значениями в диапазоне 0,05–0,07. Оценки погрешности применения (1) для широкого диапазона спектра показали, что ошибки увеличиваются в два раза. Относительно средних значений АОТ для сравнения отметим, что авторами [3, 5] для условий Северной Атлантики и для длин волн 1,24 и 1,64 мкм приводятся данные, близкие к нашим, – в пределах 0,04–0,08.

Таким образом, из полученных результатов следует, что АОТ атмосферы ВК и ЦО районов в области спектра 1–4 мкм имеют близкие значения, а основные различия проявляются в видимом диапазоне. Трансформация спектрального хода τ_{λ}^{A} при удалении от континента в глубь океана за несколько дней измерений иллюстрируется на рис. 2 пунктирными линиями.

Дневная изменчивость АОТ над океаном, судя по литературным данным, ранее не анализировалась. Основанием для этого, по-видимому, были недостаточная полнота результатов наблюдений и предположение о том, что менее выраженные (по сравнению с континентом) суточные колебания метеопараметров не должны приводить к заметной изменчивости АОТ. Действительно, учет внутрисуточных вариаций АОТ (см. последнюю колонку табл. 1) практически не увеличивает дисперсию, что свидетельствует о малом влиянии дневных колебаний. В единичных реализациях $\tau^{A}_{\lambda}(t)$ регулярная закономерность тоже не просматривается. Тем не менее для усредненных данных нами уже отмечалось [9] наличие дневного хода АОТ с максимумом в полуденные часы. Оценки $\tau_{\lambda}^{A}(t)$ для ЦО района подтвердили этот факт (рис. 3).

Рис. 3. Дневная изменчивость спектральных составляющих АОТ (а) и параметра Ангстрема (б)

Наряду со спектральными различиями общим является повышение τ_{λ}^{A} от утра к полудню, а затем медленный спад к вечеру. Дневная амплитуда изменения АОТ в среднем составляет 15–30%. Рассмотренную закономерность $\tau_{\lambda}^{4}(t)$ можно объяснить суммарным воздействием на аэрозоль скорости встра и относительной влажности, которые имеют похожую дневную изменчивость. Интересным следствием спектральных различий дневного хода в послеполуденный период является хорошо выраженное изменение селективности τ_{λ}^{A} : нормированное значение α увеличивается к вечеру в 2–2,5 раза.

Рис. 4. Спектральный ход коэффициентов корреляции $R(\tau_{0,37}, \tau_{\lambda j})$ и $R(\tau_{4,0}, \tau_{\lambda j})$. Уровень значимой корреляции с доверительной вероятностью 0,95 составляет 0,2

Взаимосвязь АОТ в различных участках спектра иллюстрируется на рис. 4. В особенностях спектрального хода коэффициентов корреляции $R(\tau_{\lambda_i}; \tau_{\lambda_i})$ следует отметить, что на монотонное уменьшение взаимосвязи $R(\tau_{\lambda_i}; \tau_{\lambda_j})$ по мере увеличения разности волн $\lambda_i - \lambda_j$ накладываются максимумы в области ~ 0,4 и 2 мкм. Такое поведение коэффициентов взаимной корреля-1464

Д.М. Кабанов, С.М. Сакерин

ции можно объяснить общей физической природой двух максимумов в функции распределения аэрозольных частиц над океаном [14, 15] с радиусами около 0,4 и 1,5 мкм. Наличие взаимной реакции двух фракций на изменение внешних условий (скорость ветра, влажность и др.) находит свое отражение в том, что корреляция АОТ усиливается в участках спектра, наиболее чувствительных к указанным размерам частиц аэрозоля.

ОВС атмосферы

Общее изменение влагосодержания за время рейса составило 0,8–2,4 г/см² (см. рис. 1) и в значительной степени было связано с пространственной изменчивостью, возникшей при движении судна между 29 и 54° с.ш. Широтная зависимость ОВС оказалась хорошо выраженной (коэффициент корреляции 0,86) со средним градиентом уменьшения W около 0,5 г/см² на 10° широты (рис. 5,*a*).

Для снижения влияния пространственной составляющей отдельно были проанализированы данные, полученные в широтной зоне 29–40° с.ш. Из статистических характеристик межсуточной изменчивости OBC (табл. 3) следует, что влагосодержание в выделенной части океана в период исследований отличалось малой изменчивостью ($V_W = 14\%$) и меньшей величиной по сравнению со средним значением для этих широт[16] – около 2,6 г/см². Более высокий уровень вариаций W, проявившийся в общем массиве, связан, как уже отмечалось, с пространственными неоднородностями поля влажности. Оценки внутрисуточной изменчивости OBC показали на отсутствие регулярной компоненты дневного хода W.

Рис. 5. Зависимость ОВС от широты, скорости ветра и упругости водяного пара в приводном слое

Таблица З

Статистические характеристики межсуточной изменчивости ОВС

Статистика ОВС	\bar{W}	σ_W	V_W	min	max	N (дней)
Центрально-океанический район (29 ÷ 40 ° с.ш.)	1,91	0,26	0,14	1,36	2,35	16
Все данные (29 ÷ 54 ° с.ш.)	1,64	0,44	0,27	0,84	2,35	25

Для определения влияния метеопараметров на формирование OBC была рассмотрена взаимосвязь с упругостью водяного пара e и скоростью ветра в приводном слое V. Зависимость OBC от влажности для всего массива данных линейная с коэффициентом корреляции 0,92 (рис. 5,e). Если рассмотреть данные только для ЦО района, то корреляция R(W; e) уменьшается до 0,5.

Противоположная картина наблюдается во взаимосвязи OBC со скоростью ветра. Из-за сильного влияния широтной зависимости OBC корреляция со скоростью ветра в общем массиве данных не просматривается. При исключении влияния зональной составляющей (результаты в пределах ЦО района) корреляция R(W; V) становится значимой и составляет 0,56 (рис. 5, δ), т.е. увеличение испарения с водной поверхности при росте скорости ветра влияет не только на влажность в нижнем слое, но и на интегральное содержание водяного пара.

Такое противоположное поведение R(W; e) и R(W; V) при переходе от общего массива данных к отдельному району, на первый взгляд, может показаться странным. Причина состоит в следующем: ОВС и упругость водяного пара имеют общую физическую природу, характеризуя влажность в локальном объеме и всей толщи атмосферы. Поэтому при общем для всех ат-

Результаты исследований аэрозольной оптической толщи и влагосодержания атмосферы 1465

мосферных условий высотном ходе влажности (в среднем – экспоненциальное убывание) корреляция R(W; e) возрастает при увеличении диапазона сопоставляемых величин. Последнему способствует расширение пространственно-временного диапазона наблюдений. Для ограниченной выборки данных корреляция R(W; e) разрушается за счет локальных неоднородностей и короткопериодных вариаций влажности, которые слабее проявляются в интегральной характеристике W.

Зависимость OBC от ветра является более сложной и завуалированной, так как изменчивость W определяется массой других причин (циркуляционные процессы, температурный режим и т.д.). Поэтому условием проявления корреляции R(W; V) является исключение или ослабление влияния других факторов. В нашем случае это произошло при рассмотрении данных для ограниченного района с приблизительно постоянными атмосферными условиями, влияющими на влагосодержание.

Заключение

Проведенные исследования спектральной прозрачности атмосферы над океаном позволили получить новые, статистически обеспеченные данные о закономерностях изменчивости двух основных (кроме облачности) компонент – АОТ и ОВС, определяющих радиационные переносы. Основные выводы можно обобщить в следующем виде:

1. Океаническая атмосфера вблизи континентов, даже вне прибрежной зоны, отличается от центрально-океанических районов более высокими аэрозольными замутнениями и селективностью спектрального хода АОТ ($\overline{\tau_{0.56}} - 0.125$ и 0,069; $\overline{\alpha} - 1.0$ и 0,49 соответственно).

2. Основной вклад в дисперсию изменчивости АОТ вносят синоптические процессы (коэффициент межсуточных вариаций около 40%), а в дневном ходе наблюдается полуденный максимум с общей амплитудой 15–30%. Послеполуденное уменьшение АОТ сопровождается в среднем увеличением селективности спектрального хода.

3. В диапазоне спектра более 1 мкм АОТ исследованных районов имеет квазинейтральную спектральную зависимость со средними значениями в пределах 0,05–0,07.

4. Изменчивость OBC атмосферы за период исследований определялась наличием широтной зависимости (около 0,5 г/см² на 10° широты), а синоптические колебания имеют небольшую по сравнению с AOT величину $V_W \approx 14\%$.

- Кабанов Д. М., Сакерин С. М., Турчинович С. А. Солнечные многоволновые фотометры для исследования прямой радиации и аэрозольно-газового состава атмосферы // Региональный мониторинг атмосферы. Ч. 2 / Под ред. М.В. Кабанова. Томск, 1997. С. 131–145.
- 2. Кабанов Д. М., Сакерин С. М. // Оптика атмосферы и океана. 1997. Т. 10. N 7. С. 866-875.
- 3. Villevalde Yu.V., Smirnov A.V. et al. // J. Geophys. Res. 1994. V. 99. P. 20, 983-20, 988.
- 4. V o l z F. // J. Atmos. Sci. 1970. V. 27. P. 1041–1046.

5. Wolgin V.M., Radionov V.F., Leiterer V. // Z. Meteorol. 1991. V. 41. P. 267-272.

- 6. Кабанов Д. М., Сакерин С. М. // Оптика атмосферы и океана. 1995. Т. 8. N 6. С. 852-860.
- 7. Кабанов Д. М., Сакерин С. М. // IV Симпозиум «Оптика атмосферы и океана»: Тезисы докл. Томск: Спектр, 1997. С. 140–141.
- 8. Сакерин С.М., Афонин С.В., Еремина Т.А., Игнатов А.М., Кабанов Д.М. // Оптика атмосферы и океана. 1991. Т. 4. N 7. С. 695–704.
- 9. Zuev V.E., Kabanov D.M., Sakerin S.M. // Proc. SPIE «Ocean optic XIII». 1997. (In press).
- 10. Smirnov A., Yershov O., Villevalde Y. // Proc. SPIE. Atmospheric Sensing and Modeling II. 1995. V. 2582. P. 203-214.
- 11. Бартенева О.Д., Никитинская Н.И. и др. // Прозрачность толщи атмосферы в видимой и ближней ИК-области спектра. Л.: Гидрометеоиздат, 1991. 224 с.
- 12. Smirnov A.V., Villevalde Yu.V. et al. // J. Geophys. Res. 1995. V. 100. N D8. P. 16, 639–16, 650.
- 13. Reddy P.J., Kreiner F.W. // Global Biogeochem. Cycles. 1990. N 4. P. 225-240.
- 14. Сакерин С. М., Кабанов Д. М., Полькин В. В. // Оптика атмосферы и океана. 1995. Т. 8. N 12. С. 1767–1777.
- 15. Кабанов Д.М., Панченко М.В., Полькин В.В., Сакерин С.М. // IV Симпозиум «Оптика атмосферы и океана»: Тезисы докл. Томск: Спектр, 1997. С. 116–117.
- 16. Tuller S. E. // Mouthly Weather Review. 1968. V. 96. N 11. P. 785–797.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 27 июля 1997 г.

Д.М. Кабанов, С.М. Сакерин

D.M. Kabanov, S.M. Sakerin. Results of Measurements of Aerosol Optical Thickness and Moisture Content in the Atmosphere of Central Atlantic.

Spatial-temporal variability of aerosol spectral optical thicknesses and integral moisture content in the atmosphere over the Atlantic Ocean during the 39-th expedition of the research ship «Akademik Mstislav Keldysh» have been studied. The relative day-to-day variability of the aerosol thickness is shown to be about 40%; the diurnal change has the noon maximum with 15-30% amplitude relative to morning and evening data. Spatially, an approach to continents is accompanied by a change of spectral behaviour of the aerosol optical thickness; its selectivity grows due to increase of small-size fraction content of continental aerosol. As a consequence, the spectral dependence changes: in the visible the difference between near-continental and central oceanic regions is noticeable; in 1-4 µm range the spectral variation is close to a neutral one and changes insignificantly.