Vol. 35, issue 09, article # 8

Zhuravleva T. B., Nasrtdinov I. M., Konovalov I. B., Golovushkin N. A. Radiative forcing of smoke aerosol taking into account the photochemical evolution of its organic component: influence of illumination condtions and underlying surface albedo. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 748–758. DOI: 10.15372/AOO20220908 [in Russian].
Copy the reference to clipboard


The simulation results the radiative forcing of smoke aerosol (RFA) at the boundaries of the atmosphere are considered depending on the photochemical evolution of its organic component, illumination conditions, and underlying surface types (water, mixed forest, and snow/ice). An increase in the albedo of the underlying surface and a decrease in the aerosol optical depth can lead to the transformation of the cooling effect into heating at the top of the atmosphere. An increase in the absorbency of aerosol particles is the cause of an increase in RFA at the top of the atmosphere, which is most significant over snow/ice surfaces, while at the bottom of the atmosphere, RFA decreases. As the solar zenith angle increases, the absolute value of RFA decreases as the smoke plume propagates over weakly reflecting surfaces, but with an increase in the albedo of the underlying surface, this dependence transforms into a nonmonotonic one. It is shown that neglecting the transformations of the optical characteristics of organic aerosol can lead to overestimation or underestimation of the radiative forcing of the aerosol at the top of the atmosphere by several times (by several tens of W/m2), and also cause an error in determining the RFA sign.


organic aerosol, microphysical model, evolution of optical characteristics, numerical simulation, solar radiation, aerosol radiative forcing


  1. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., De Angelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118, N 11. P. 5380–5552. DOI: 10.1002/jgrd.50171.
  2. Ward D.S., Kloster S., Mahowald N.M., Rogers B.M., Randerson J.T., Hess P.G. The changing radiative forcing of fires: Global model estimates for past, present and future // Atmos. Chem. Phys. 2012. V. 12, N 22. P. 10857–10886. DOI: 10.5194/acp-12-10857-2012.
  3. Sand M., Berntsen T.K., von Salzen K., Flanner M.G., Langner J., Victor D.G. Response of Arctic temperature to changes in emissions of short-lived climate forcers // Nat. Clim. Chang. 2015. V. 6. P. 286–289. DOI: 10.1038/nclimate2880.
  4. Andreae M.O. Emission of trace gases and aerosols from biomass burning – an updated assessment // Atmos. Chem. Phys. 2019. V. 19, N 13. P. 8523–8546. DOI: 10.5194/acp-19-8523-2019.
  5. Reid J.S., Koppmann R., Eck T.F., Eleuterio D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5, N 3. P. 799–825. DOI: 10.5194/acp-5-799-2005.
  6. Reid J.S., Eck T.F., Christopher S.A., Koppmann R., Dubovik O., Eleuterio D.P., Holben B.N., Reid E.A., Zhang J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles // Atmos. Chem. Phys. 2005. V. 5, N 3. P. 827–849. DOI: 10.5194/acp-5-827-2005.
  7. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: An investigative review // Aerosol Sci. Technol. 2006. V. 40, N 1. P. 27–67. DOI: 10.1080/02786820500421521.
  8. Nikonovas T., North P.R.J., Doerr S.H. Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution // Atmos. Chem. Phys. 2015. V. 15, N 14. P. 7929–7943. DOI: 10.5194/acp-15-7929-2015.
  9. Hodshire A., Akherati A., Alvarado M.J., Brown-Steiner B., Jathar S.H., Jimenez J.L., Kreidenweis S.M., Lonsdale C.R., Onasch T.B., Ortega A., Pierce J.R. Aging effects on biomass burning aerosol mass and composition: A critical review of field and laboratory studies // Environ. Sci. Technol. 2019. V. 53, N 17. P. 10007–10022. DOI: 10.1021/acs.est.9b02588.
  10. Robinson A.L., Donahue N.M., Shrivastava M.K., Weitkamp E.A., Sage A.M., Grieshop A.P., Lane T.E., Pierce J.R., Pandis S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging // Science. 2007. V. 315, N 5816. P. 1259–1262. DOI: 10.1126/science.1133061.
  11. Akagi S.K., Craven J.S., Taylor J.W., McMeeking G.R., Yokelson R.J., Burling I.R., Urbanski S.P., Wold C.E., Seinfeld J.H., Coe H., Alvarado M.J., Weise D.R. Evolution of trace gases and particles emitted by a chaparral fire in California // Atmos. Chem. Phys. 2012. V. 12, N 3. P. 1397–1421. DOI: 10.5194/acp-12-1397-2012.
  12. Konovalov I.B., Golovushkin N.A., Beekmann M., Andreae M.O. Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes // Atmos. Chem. Phys. 2021. V. 21, N 1. P. 357–392. DOI: 10.5194/acp-21-357-2021.
  13. Lee-Taylor J., Hodzic A., Madronich S., Aumont B., Camredon M., Valorso R. Multiday production of condensing organic aerosol mass in urban and forest outflow // Atmos. Chem. Phys. 2015. V. 15, N 2. P. 595–615. DOI: 10.5194/acp-15-595-2015.
  14. Bian Q., Jathar S.H., Kodros J.K., Barsanti K.C., Hatch L.E., May A.A., Kreidenweis S.M., Pierce J.R. Secondary organic aerosol for mation in biomass-burning plumes: Theoretical analysis of lab studies and ambient plumes // Atmos. Chem. Phys. 2017. V. 17, N 8. P. 5459–5475. DOI: 10.5194/acp-17-5459-2017.
  15. Hodshire A.L., Bian Q., Ramnarine E., Lonsdale C.R., Alvarado M.J., Kreidenweis S.M., Jathar S.H., Pierce J.R. More than emissions and chemistry: Fire size, dilution, and background aerosol also greatly influence near-field biomass burning aerosol aging // J. Geophys. Res.: Atmos. 2019. V. 124, N 10. P. 5589–5611. DOI: 10.1029/2018JD029674.
  16. Zhuravleva T., Nastrdinov I., Konovalov I., Golovushkin N., Beekmann M. Impact of the atmospheric photochemical evolution of the organic component of biomass burning aerosol on its radiative forcing efficiency: A box model analysis // Atmosphere. 2021. V. 12, N 12. P. 1555. DOI: 10.3390/atmos12121555.
  17. Konovalov I.B., Beekmann M., Golovushkin N.A., Andreae M.O. Nonlinear behavior of organic aerosol in biomass burning plumes: A microphysical model analysis // Atmos. Chem. Phys. 2019. V. 19, N 19. P. 12091–12119. DOI: 10.5194/acp-19-12091-2019.
  18. Golovushkin N.A, Konovalov I.B. Nonlinear features of the atmospheric evolution of the absorption properties of biomass burning aerosol // Proc. SPIE. 2020. V. 11560. P. 115605C. DOI: 10.1117/12.2575980.
  19. Konovalov I.B., Golovushkin N.A., Beekmann M., Panchenko M.V., Andreae M.O. Inferring the absorption properties of organic aerosol in biomass burning plumes from remote optical observations // Atmos. Meas. Tech. 2021. V. 14, N 10. P. 6647–6673. DOI: 10.5194/amt-14-6647-2021.
  20. Mikhailov E.F., Mironova S., Mironov G., Vlasenko S., Panov A., Chi X., Walter D., Carbone S., Artaxo P., Heimann M., Lavric J., Pöschl U., Andreae M.O. Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia // Atmos. Chem. Phys. 2017. V. 17, N 23. P. 14365–14392. DOI: 10.5194/acp-17-14365-2017.
  21. Kozlov V.S., Konovalov I.B., Uzhegov V.N., Chernov D.G., Pol’kin Vas.V., Zenkova P.N., Yausheva E.P., Shmargunov V.P., Dubtsov S.N. Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the Big Aerosol Chamber at the stages of smoke generation and ageing // Proc. SPIE. 2020. V. 11560. P. 1156046. DOI: 10.1117/12.2575499.
  22. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012 // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5722–5741. DOI: 10.1080/01431161.2014.945010.
  23. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kozlov V.S., Pol’kin V.V., Radionov V.F., Chernov D.G. Sravnenie srednih harakteristik aerozolya v sosednih arkticheskih rajonah // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 640–646; Sakerin S.M., Golobokova L.P., Kabanov D.M., Kozlov V.S., Pol’kin V.V., Radionov V.F., Chernov D.G. Comparison of average aerosol characteristics in neighboring Arctic regions // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 33–40.
  24. Terpugova S.A., Zenkova P.N., Kabanov D.M., Pol’kin V.V., Golobokova L.P., Panchenko M.V., Sakerin S.M., Lisitzin A.P., Shevchenko V.P., Politova N.V., Kozlov V.S., Khodzher T.V., Shmargunov V.P., Chernov D.G. Rezul'taty issledovanij harakteristik aerozolya v atmosfere Karskogo i Barentseva morej v letne-osennij period 2016 year // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 391–402; Terpugova S.A., Zenkova P.N., Kabanov D.M., Pol’kin V.V., Golobokova L.P., Panchenko M.V., Sakerin S.M., Lisitzin A.P., Shevchenko V.P., Politova N.V., Kozlov V.S., Khodzher T.V., Shmargunov V.P., Chernov D.G. Results of the study of aerosol characteristics in the atmosphere of the Kara and Barents Seas in summer and autumn 2016 // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 507–518.
  25. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Rezul'taty izmerenij fiziko-himicheskih harakteristik atmosfernogo aerozolya na nauchno-issledovatel'skom statsionare «Ledovaya baza “Mys Baranova”» v 2018 year // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 421–429; Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Measurements of physicochemical characteristics of atmospheric aerosol at research station ice base Cape Baranov in 2018 // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 511–520.
  26. Physics and Chemistry of the Arctic Atmosphere / A. Kokhanovsky, C. Tomasi (eds.). Switzerland: Springer, 2020. 723 p.
  27. Schmeisser L., Backman J., Ogren J.A., Andrews E., Asmi E., Starkweather S., Uttal T., Fiebig M., Sharma S., Eleftheriadis K., Vratolis S., Bergin M., Tunved P., Jefferson A. Seasonality of aerosol optical properties in the Arctic // Atmos. Chem. Phys. 2018. V. 18, N 16. P. 11599–11622. DOI: 10.5194/acp-18-11599-2018.
  28. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844. DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
  29. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Chris Benner D., Bernath P.F., Birk Bizzocchi M.L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev V.G., Wagner G. The HITRAN2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50. DOI: 10.1016/j.jqsrt.2013.07.002.
  30. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. R. Soc. A. 2012. V. 370, N 1968. P. 2520–2556. DOI: 10.1098/rsta.2011.0295.
  31. Komarov V.S., Lomakina N.Ya. Statisticheskie modeli pogranichnogo sloya atmosfery Zapadnoj Sibiri. Tomsk: Izd-vo IOA SO RAN, 2008. 222 p.
  32. Anderson G., Clough S., Kneizys F., Chetwynd J., Shettle E. AFGL-TR-86-0110. Environal Research Paper N 954. AFGL Atmospheric Constituent Profiles (0–120 km). Air Force Geophysics Laboratory, 1986. 46 p.
  33. Antũna Marrero J.C., Román R., Cachorro V.E., Mateos D., Toledano C., Calle A., Antũna-Sánchez J.C., Vaquero-Martínez J., Antón M., de Frutos Baraja A.M. Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations // Atmos. Res. 2022. V. 270. P. 106059. DOI: 10.1016/j.atmosres.2022.106059
  34. Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Krasnov O.A., Maksyutov Sh.Sh., Machida T., Panchenko M.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Sasakawa M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie dinamiki kontsentratsii parnikovyh gazov na territorii Zapadnoj Sibiri // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 777–785. DOI: 10.15372/AOO20190910.
  35. Bazhenov O.E., Burlakov V.D., Grishaev M.V., Gridnev Yu.V., Dolgij S.I., Makeev A.P., Nevzorov A.V., Sal'nikova N.S., Trifonov D.A., Arshinov M.Yu., Ivlev G.A. Sravnenie rezul'tatov distantsionnyh spektrofotometricheskih i lidarnyh izmerenij O3, NО2, temperatury i stratosfernogo aerozolya s dannymi sputnikovyh i radiozondovyh izmerenij // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 216–223. DOI: 10.15372/AOO20160308.
  36. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER spectral library version 2.0 // Remote Sens. Environ. 2009. V. 113, N 4. P. 711–715. DOI: 10.1016/j.rse.2008.11.007.
  37. Gueymard C.A. The Sun’s total and spectral irradiance for solar energy applications and solar radiation models // Sol. Energy. 2004. V. 76, N 4. P. 423–453. DOI: 10.1016/j.solener.2003.08.039.
  38. Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Modelirovanie pryamogo radiatsionnogo forsinga aerozolya dlya tipichnyh letnih uslovij Sibiri. Part 1: Metod rascheta i vybor vhodnyh parametrov // Optika atmosf. i okeana. 2009. V. 22, N 2. P. 163–172; Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Simulation of aerosol direct radiative forcing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters // Atmos. Ocean. Opt. 2009. V. 22, N 1. P. 63–73.
  39. Slingo A. A GCM parameterization for shortwave radiative properties of water clouds // J. Atmos. Sci. 1989. V. 46, N 10. P. 1419–1427. DOI: 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.
  40. Haywood J.M., Shine K.P. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model // Q. J. R. Meteorol. Soc. 1997. V. 123, N 543. P. 1907–1930. DOI: 10.1002/qj.49712354307.
  41. Zhuravleva T.B., Kabanov D.M., Sakerin S.M. O dnevnoj izmenchivosti aerozol'noj opticheskoj tolshchi atmosfery i radiatsionnogo forsinga aerozolya // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 700–709; Zhuravleva T.B., Kabanov D.M., Sakerin S.M. On daytime variations of atmospheric aerosol optical depth and aerosol radiative forcing // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 528–537.
  42. Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol’kin V.V., Terpugova S.A., Chernov D.G. Model'nye otsenki dinamiki vertikal'noj struktury pogloshcheniya solnechnogo izlucheniya i temperaturnyh effektov v fonovyh usloviyah i ekstremal'no zadymlennoj atmosfere po dannym samoletnyh nablyudenij // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 834–839; Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol’kin V.V., Terpugova S.A., Chernov D.G. Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in extremely smoke-laden atmosphere according to data of aircraft observations // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 24–30.
  43. Derimian Y., Dubovik O., Huang X., Lapyonok T., Litvinov P., Kostinski A.B., Dubuisson P., Ducos F. Comprehensive tool for calculation of radiative fluxes: Illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics // Atmos. Chem. Phys. 2016. V. 16, N 9. P. 5763–5780. DOI: 10.5194/acp-16-5763-2016.
  44. Markowicz K.M., Flatau P.J., Remiszewska J., Witek M., Reid E.A., Reid J.S., Bucholtz A., Holben B. Observations and modeling of the surface aerosol radiative forcing during UAE2 // J. Atmos. Sci. 2008. V. 65, N 9. P. 2877–2891. DOI: 10.1175/2007jas2555.1.
  45. Tomasi C., Lanconelli C., Lupi A., Mazzola M. Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface // Light Scattering Reviews 8. Radiative Transfer and Light Scattering / A.A. Kokhanovsky (ed.). Springer, 2013. 634 p. DOI: 10.1007/978-3-642-32106-1.
  46. Stone R.S., Anderson G.P., Shettle E.P., Andrews E., Loukachine K., Dutton E.G., Schaaf C., Roman III M.O. Radiative impact of boreal smoke in the Arctic: Observed and modeled // J. Geophys. Res. 2008. V. 113, N D14S16. P. 1–17. DOI: 10.1029/2007JD009657.
  47. Markowicz K.M., Lisok J., Xian P. Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget // Atmos. Environ. 2017. V. 171. P. 248–260. DOI: 10.1016/j.atmosenv.2017.10.015.
  48. Markowicz K.M., Flatau P.J., Quinn P.K., Carrico C.M., Flatau M.K., Vogelmann A.M., Bates D., Liu M., Rood M.J. Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective // J. Geophys. Res. 2003. V. 108, N D23. P. 1–12. DOI: 10.1029/2002jd003066.