Vol. 35, issue 09, article # 6

Kuryak A. N., Pomazkin D. A., Tikhomirov B. A. OAD signal generation in absorbing gas–hydrogen mixtures. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 730–734. DOI: 10.15372/AOO20220906 [in Russian].
Copy the reference to clipboard

Abstract:

The reasons are found for a decrease in the sensitivity of a TROA (time-resolved optoacoustic) detector in spectrometers with pulsed lasers and of a non-resonant OA detector in spectrometers with cw lasers when buffer gas nitrogen (air) is replaced by hydrogen in mixtures with an absorbing gas. In the first case, the reason is the high speed of sound in hydrogen at an insufficiently wide working frequency band of the microphone. In the second case, the reason for the loss of sensitivity is the low dynamic viscosity of hydrogen, which results in faster pressure equalization in the pre- and behind-membrane volumes of the OA detector chamber for a light pause as compared to heavier molecular gases. Therefore, the amplitude of an OA signal at the modulation frequency of the cw laser radiation increases in proportion to the dynamic viscosity of the gas.

Keywords:

optoacoustic detector, sensitivity, pressure, gas type dependence, hydrogen

References:

  1. Antipov A.B., Kapitanov V.A., Ponomarev Yu.N., Sapozhnikova V.A. OA-metod v lazernoj spektroskopii molekulyarnyh gazov. Novosibirsk: Nauka, 1984. 128 p.
  2. Tikhomirov B.A., Troitskii V.O., Kapitanov V.A., Evtuschenko G.S., Ponomarev Yu.N. Photo-acoustic measurements of water vapor absorption coefficient in UV spectral region // Acta Phys. Sinica. 1998. V. 7, N 3. P. 190–195.
  3. Kapitanov V.A., Troitskii V.O., Tikhomirov B.A., Tyryshkin I.S. Pulse photoacoustic spectroscopy of water vapor in UV spectral region with space-time resolution of signals // Proc. SPIE. 1996. V. 3090. P. 204–207.
  4. Zharov V.P., Letohov V.S. Lazernaya optiko-akusticheskaya spektroskopiya. M.: Nauka, 1984. 320 p.
  5. Svojstva gazov // Thermalinfo.ru. M., 2022. URL: http: // thermalinfo.ru/svojstva-gazov/gazy-raznye / (data obrashcheniya: 18.03.2022).
  6. Beck K.M., Gordon R.J. Theory and application of time-resolved optoacoustics in gases // J. Chem. Phys. 1988. V. 89, N 9. P. 5560–5567.
  7. Heritier J.-M. Electrostrictive limit and focusing effects in pulsed photoacoustic detection // Opt. Commun. 1983. V. 44, N 4. P. 267–272.
  8. Dubrovskij I.M., Egorov B.M., Ryaboshapka K.P. Spravochnik po fizike. Kiev: Naukova dumka, 1986. 560 p.
  9. Kuryak A.N., Tihomirov B.A. Rol' vodyanogo para v pogloshchenii izlucheniya UF (266 nm) nanosekundnyh lazernyh impul'sov atmosfernym vozduhom // Kvant. elektron. 2020. V. 50, N 9. P. 876–881.
  10. Diebold G.J. Application of the photoacoustic effects to studies of gas phase chemical kinetics // Photoacoustic, Phototermal and Photochemical Processes in Gases / P. Hess (ed.). Berlin: Springer Verlag, 1989. P. 125–172.
  11. Zakon Puazeilya. URL: https://ru.wikipedia.org/wiki/ (data obrashcheniya: 18.03.2022).
  12. Korotchenko E.A., Lazarev V.V., Ponomarev Yu.N., Tihomirov B.A. Issledovanie ushireniya i sdvigov linij pogloshcheniya vodyanogo para v polose 103 davleniem atmosfernyh i molekulyarnyh gazov // Optika atmosf. 1990. V. 3, N 11. P. 1186–1189.