Vol. 35, issue 07, article # 7

Eliseev A. V., Timazhev A. V., Jimenez P. L. Scale heights of water vapor and sulfur species in the lower troposphere. // Optika Atmosfery i Okeana. 2022. V. 35. No. 07. P. 572–580. DOI: 10.15372/AOO20220707 [in Russian].
Copy the reference to clipboard


A global analysis of geographical features of vertical profiles of specific humidity and concentrations of sulfur dioxide and sulfate aerosols from the CAMS reanalysis data, as well as height of planetary boundary layer (PBL) from the ERA5 reanalysis data for 2003–2020 is carried out. The scale height HY is used as a characteristic of the mentioned profiles, which corresponds to the e-fold decrease in the substance Y concentration. The maxima of the height of the upper boundary of the planetary boundary layer are noted in the regions of prevailing cyclonic circulation – in storm tracks and in the regions of monsoon circulation in summer. For the vertical scale of the specific humidity profile, minima are identified in the regions of subtropical circulation with prevailing large-scale sinking of air. The vertical scale of the SO2 concentration profile is characterized by spatial minima associated with the oxidation of this substance. Finally, for HSO4 a spatial minimum near Southeast Asia is found. A statistically significant negative correlation between the PBL thickness and the vertical scale of the profile of specific humidity in humid regions of the tropics is revealed. A positive correlation between the vertical scales of the concentrations of sulfur dioxide and sulfates, most significantly manifested in the regions of strong pollution of the lower troposphere by these substances, is also obtained.


sulfur dioxide, sulfates, specific humidity, vertical scale, planetary boundary layer, correlation relationships



  1. Jaenicke R. Tropospheric aerosols // Aerosol–Cloud–Climate Interactions. San Diego: Academic Press, 1993. V. 54. P. 1–31.
  2. Warneck P. Chemistry of the Natural Atmosphere. San Diego: Academic Press, 2000. 927 p.
  3. Wypych A., Bochenek B. Vertical structure of moisture content over Europe // Adv. Meteorol. 2018. V. 2018. P. 3940503. DOI: 10.1155/2018/3940503.
  4. Eliseev A.V., Gizatullin R.D., Timazhev A.V. ChAP 1.0: A stationary tropospheric sulfur cycle for Earth system models of intermediate complexity // Geosci. Mod. Devel. 2021. V. 14, N 12. Р. 7725–7747. DOI: 10.5194/ gmd-14-7725-2021.
  5. Petoukhov V.K., Mokhov I.I., Eliseev A.V., Semenov V.A. The IAP RAS global climate model. Moscow: Dialogue-MSU. 1998. 110 p.
  6. Petoukhov V., Ganopolski A., Brovkin V., Claussen M., Eliseev A., Kubatzki K., Rahmstorf S. CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate // Clim. Dyn. 2000. V. 16, N 1. P. 1–17.
  7. Claussen M., Mysak L.A., Weaver A.J., Crucifix M., Fichefet T., Loutre M.-F., Weber S.L., Alcamo J., Alexeev V.A., Berger A., Calov R., Ganopolski A., Goosse H., Lohmann G., Lunkeit F., Mokhov I.I., Petoukhov V., Stone P., Wang Z. Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models // Clim. Dyn. 2002. V. 18, N 4. Р. 579–586. DOI: 10.1007/s00382-001-0200-1.
  8. Mohov I.I., Eliseev A.V., Demchenko P.F., Hon V.CH., Akperov M.G., Arzhanov M.M., Karpenko A.A., Tihonov V.A., Chernokul'skij A.V. Klimaticheskie izmeneniya i ih otsenki s ispol'zovaniem global'noj modeli IFA RAN // Dokl. RAN. 2005. V. 402, N 2. P. 243–247.
  9. Mohov I.I., Eliseev A.V., Gur'yanov V.V. Model'nye otsenki global'nyh i regional'nyh izmenenij klimata v golotsene // Dokl. RAN. Nauki o Zemle. 2020. V. 490, N 1. P. 27–32. DOI: 10.31857/ S2686739720010065.
  10. Mohov I.I., Eliseev A.V. Modelirovanie global'nyh klimaticheskih izmenenij v XX–XXIII vekah pri novyh stsenariyah antropogennyh vozdejstvij RCP // Dokl. RAN. 2012. V. 443, N 6. P. 732–736.
  11. MacDougall A.H., Frölicher T.L., Jones C.D., Rogelj J., Matthews H.D., Zickfeld K., Arora V.K., Barrett N.J., Brovkin V., Burger F.A., Eby M., Eliseev A.V., Hajima T., Holden P.B., Jeltsch-Thömmes A., Koven C., Mengis N., Menviel L., Michou M., Mokhov I.I., Oka A., Schwinger J., Séférian R., Shaffer G., Sokolov A., Tachiiri K., Tjiputra J., Wiltshire A., Ziehn T. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2 // Biogeosciences. 2020. V. 17, N 11. P. 2987–3016. DOI: 10.5194/bg-17-2987-2020.
  12. Holton J.R. An Introduction to Dynamic Meteorology. San Diego: Academic Press, 2004. 535 p.
  13. Girshfel'd Dzh., Kertiss Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostej. M.: Izd-vo inostrannoj literatury, 1961. 929 p.
  14. Eliseev A.V., Chzhan M., Gizatullin R.D., Altuhova A.V., Perevedentsev Yu.P., Skorohod A.I. Vliyanie sernistogo gaza v atmosfere na nazemnyj uglerodnyj tsikl // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55. N 1. P. 41–53.
  15. Zuev V.E., Titov G.A. Optika atmosfery i klimat. Tomsk: Spektr, 1996. 272 p.
  16. Fejgel'son E.M. Luchistyj teploobmen i oblaka. L.: Gidrometeoizdat, 1970. 230 p.
  17. Charlson R., Schwartz S., Hales J., Cess R., Coackley J., Hansen J., Hofmann D. Climate forcing by anthropogenic aerosols // Science. 1992. V. 255. P. 423–430. DOI: 10.1126/science.255.5043.423.
  18. Naik V., Szopa S., Adhikary B., Artaxo P., Berntsen T., Collins W.D., Fuzzi S., Gallardo L., Kiendler Scharr A., Klimont Z., Liao H., Unger N., Zanis P. Short-lived climate forcers // Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, 2021 (in print).
  19. Semenov S.M., Kunina I.M., Kuhta B.A. Sravnenie antropogennyh izmenenij prizemnyh kontsentratsij O3, SO2, CO2 v Evrope po ekologicheskomu kriteriyu // Dokl. RAN. 1998. V. 361, N 2. P. 275–279.
  20. Eliseev A.V. Impact of tropospheric sulphate aerosols on the terrestrial carbon cycle // Glob. Planet. Change. 2015. V. 124. P. 30–40.
  21. Eliseev A.V. Vliyanie soedinenij sery v troposfere na nazemnyj uglerodnyj tsikl // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 6. P. 673–683.
  22. Inness A., Ades M., Agustí-Panareda A., Barré J., Benedictow A., Blechschmidt A.-M., Dominguez J., Engelen R., Eskes H., Flemming J., Huijnen V., Jones L., Kipling Z., Massart S., Parrington M., Peuch V.-H., Razinger M., Remy S., Schulz M., Suttie M. The CAMS reanalysis of atmospheric composition // Atmos. Chem. Phys. 2019. V. 19, N 6. Р. 3515–3556. DOI: 10.5194/ acp-19-3515-2019.
  23. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Quant. J. Roy. Meteorol. Soc. 2020. V. 146, N 730. Р. 1999–2049. DOI: 10.1002/qj.3803.
  24. Vogelezang D.H.P., Holtslag A.A.M. Evaluation and model impacts of alternative boundary-layer height formulations // Bound.-Lay. Meteorol. 1996. V. 81, N 3. P. 245–269. DOI:10.1007/BF02430331.
  25. Coumou D., Petoukhov V., Eliseev A.V. Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere // Nonlin. Proc. Geophys. 2011. V. 18, N 6. P. 807–827.
  26. Wilks D.S. “Field Significance” and the “False Discovery Rate” // J. Appl. Meteorol. Climatol. 2006. V. 45, N 9. Р. 1181–1189. DOI: 10.1175/JAM2404.1.
  27. Grabowski W.W., Morrison H. Supersaturation, buo­yancy, and deep convection dynamics // Atmos. Chem. Phys. 2021. V. 21, N 18. Р. 13997–14018. DOI: 10. 5194/acp-21-13997-2021.
  28. Taylor P.A. Constant flux layers with gravitational settling: Links to aerosols, fog and deposition velocities // Atmos. Chem. Phys. 2021. V. 21, N 24. Р. 18263–18269. DOI: 10.5194/acp-21-18263-2021.