Vol. 35, issue 06, article # 5

Andreeva I. S., Baturina O. A., Safatov A. S., Solovyanova N. A., Alikina T. Yu., Puchkova L. I., Rebus M. E., Buryak G. A., Ol'kin S. E., Kozlov A. S., Kabilov M. R. Concentration and composition of cultured microorganisms in atmospheric air aerosols in Novosibirsk depending on the season. // Optika Atmosfery i Okeana. 2022. V. 35. No. 06. P. 465–470. DOI: 10.15372/AOO20220605 [in Russian].
Copy the reference to clipboard

Abstract:

Microorganisms of atmospheric aerosols sampled at four stationary points with different anthropogenic load in Novosibirsk in the period from September 2020 to December 2021 are studied. Atmospheric aerosols were monthly sampled by atmospheric air filtration at reinforced Teflon membranes Sartorius for 12 h, with a two week lags. Under those sampling conditions, spore-forming bacteria of the genus Bacillus and cocci of the genera Staphylococcus and Micrococcus predominated among the cultured bacteria in winter. In the spring-summer and autumn samples of atmospheric aerosols, the concentrations and diversity of coccal forms, spore-forming and non-spore-forming bacteria, actinomycetes, and fungi sharply increased. We have identified a significant number of hemolytic spore-forming bacteria and staphylococci, which are multi-resistant to antibiotics and have enzymes contributing to infectious process development.

Keywords:

atmospheric bioaerosols, microorganisms, Novosibirsk, seasonal dependence, concentration, composition, enzymatic properties, pathogenic properties

References:

  1. Mohler O., DeMott P.J., Vali G., Levin Z. Microbiology and atmospheric processes: The role of biological particles in cloud physics // Biogeosci. 2007. V. 4, N 4. P. 1059–1071.
  2. Gandolfi I., Bertolini V., Ambrosini R., Bestetti G., Franzetti A. Unravelling the bacterial diversity in the atmosphere // Appl. Microbiol. Biotechnol. 2013. V. 97, N 11. P. 4727–4736.
  3. Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vliyanie estestvennyh i antropogennyh aerozolej na global'nyj i regional'nyj klimat // Ros. him. zhurn. 2008. V. 52, N 5. P. 112–119.
  4. O sostoyanii i ob ohrane okruzhayushchej sredy Novosibirskoj oblasti v 2020 year. Novosibirsk, 2021. 176 p.
  5. Golovko V.V., Kutsenogij K.P., Istomin V.L. Schetnye i massovye kontsentratsii pyl'tsevoj komponenty atmosfernogo aerozolya v okrestnostyah g. Novosibirska v period tsveteniya drevesnyh rastenij // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 529–533.
  6. Golikov R.A., Surzhikov D.V., Kislitsyna V.V., Shtajger V.A. Vliyanie zagryazneniya okruzhayushchej sredy na zdorov'e naseleniya (Obzor literatury) // Nauchnoe obozrenie. Meditsinskie nauki. 2017. N 5. P. 20–31.
  7. Chezganova E.A., Efimova O.S., Saharova V.M., Efimova A.R., Sozinov S.A., Ismagilov Z.R., Brusina E.B. Otsenka roli pyli v formirovanii rezervuara mul'tirezistentnyh gospital'nyh shtammov mikroorganizmov v otdeleniyah hirurgicheskogo profilya // Fundamental'naya i klinicheskaya meditsina. 2020. V. 5, N 1. P. 15–25.
  8. Masclaux F.G., Sakwinska O., Charrière N., Semaani E., Oppliger A. Concentration of airborne Staphylococcus aureus (MRSA and MSSA), total bacteria, and endotoxins in pig farms // Ann. Occup. Hyg. 2013. V. 57, N 5. P. 550–557.
  9. Safatov A., Andreeva I., Buryak G., Ohlopkova O., Olkin S., Puchkova L., Reznikova I., Solovyanova N., Belan B., Panchenko M., Simonenkov D. How has the hazard to humans of microorganisms found in atmospheric aerosol in the south of Western Siberia changed over 10 years? // Int. J. Environ. Res. Public Health. 2020. V. 17, N 5. DOI: 10.3390/ijerph17051651.
  10. Metody obshchej bakteriologii. V. 3 / pod red. F. Gerharda, R. Myurrej, R. Kostilou, Yu. Nestera, V. Vuda, N. Kriga, G. Filipsa. M.: Mir, 1984. 264 p.
  11. Opredelitel' bakterij Berdzhi / pod red. Dzh. Houlta. M.: Mir, 1997. V. 2. 368 p.
  12. Rukovodstvo po meditsinskoj mikrobiologii. Obshchaya i sanitarnaya mikrobiologiya. Book I / pod red. A.S. Labinskoj, E.G. Volinoj. M.: BINOM, 2008. 1080 p.
  13. Ashmarin I.P., Vorob'ev A.A. Statisticheskie metody v mikrobiologicheskih issledovaniyah. L.: MEDGIZ, 1962. 180 p.
  14. Safatov A.S., Buryak G.A., Andreeva I.S., Olkin S.E., Reznikova I.K., Sergeev A.N., Belan B.D., Panchenko M.V. Atmospheric bioaerosols // Aerosols – Science and Technology. Wienheim, Germany: Wiley – VCH Verlag GmbH & Co. KGaA, 2010. P. 407–454.
  15. Kothari V.V., Kothari R.K., Kothari C.R., Bhatt V.D., Nathani N.M., Koringa P.G., Joshi C.G., Vyas B.R.M. Genome sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India // Genome Announc. 2013. V. 1, N 5. DOI: 10.1128/genomeA.00671-13.
  16. Park Y.-G., Mun B.-G., Kang S.-M., Hussain A., Shahzad R., Seo C.-W., Kim A.-Y., Lee S.-U., Oh K.Y., Lee D.Y., Lee I.-J., Yun B.-W. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones // PLOS one. 2017. V. 12, N 3. DOI: 10.1371/journal.pone.0173203.
  17. Shivaji S., Chaturvedi P., Suresh K., Reddy G.S.N., Dutt C.B.S., Wainwright M., Narlikar J.V., Bhargava P.M. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes // Int. J. Syst. Evol. Microbiol. 2006. V. 56, N 7. P. 1465–1473.
  18. Mai L.T. Isolation and identification of factors affecting antimicrobial compound production of Bacillus velezensis // Молодой ученый. 2019. № 24. С. 21–27.
  19. Ko K.S., Oh W.S., Lee M.Y., Lee J.H., Lee H., Peck K.R., Lee N.Y., Song J.-H. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis // Int. J. Syst. Evol. Microbiol. 2006. V. 56, N 11. P. 2541–2544.
  20. Hong H.A., Huang J.-M., Khaneja R., Hiep L.V., Urdaci M.C., Cutting S.M. The safety of Bacillus subtilis and Bacillus indicus as food probiotics // J. Appl. Microbiol. 2008. V. 105, N 11. P. 510–520.
  21. Miller R.A., Beno S.M., Kent D.J., Carroll L.M., Martin N.H., Boor K.J., Kovac J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments // Int. J. Syst. Evol. Microbiol. 2016. V. 66, N 11. P. 4744–4753.
  22. Kanso S., Greene A.C., Patel B.K.C. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer // Int. J. Sys. Evol. Microbiol. 2002. V. 52, N 4. P. 869–874.
  23. Sarkhoo E., Udo E.E., Boswihi S.S., Monecke S., Mueller E., Ehricht R. The dissemination and molecular characterization of clonal complex 361 (CC361) methicillin-resistant Staphylococcus aureus (MRSA) in Kuwait hospitals // Front. Microbiol. 2021. V. 12. DOI: 10.3389/fmicb.2021.658772.
  24. Coombs G.W., Monecke S., Pearson J.C., Tan H.L., Chew Y.K., Wilson L., Ehricht R., O’Brien F.G., Christiansen K.J. Evolution and diversity of community-associated methicillin-resistant Staphylococcus aureus in a geographical region // BMC Microbiol. 2011. V. 11. DOI: 10.1186/1471-2180-11-215.
  25. Zhuang M., Achmon Y., Cao Y., Liang X., Chen L., Wang H., Siame B.A., Leung K.Y. Distribution of antibiotic resistance genes in the environment // Environ. Pollut. 2021. V. 285. DOI: 10.1016/j.envpol.2021.117402.
  26. Gwenzi W., Shamsizadeh Z., Gholipour S., Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions // Sci. Total Environ. 2022. V. 804. DOI:  10.1016/j.scitotenv.2021.150154.