Vol. 35, issue 03, article # 4

Razenkov I. A. A heuristic approach to defining the structure parameter of the refractive index of atmosphere from the turbulent lidar data. // Optika Atmosfery i Okeana. 2022. V. 35. No. 03. P. 195–204. DOI: 10.15372/AOO20220304 [in Russian].
Copy the reference to clipboard

Abstract:

It is shown that the approximate Vorobyov formula linking the lidar returns with the intensity of optical turbulence, for the case of a statistically homogeneous medium with an accuracy up to a constant coefficient, satisfactorily agrees with the sounding data. The procedure for determining the coefficient in the Vorobyov formula for a specific lidar aperture size is recommended. The construction of a nomogram for the operational determination of the intensity of homogeneous turbulence from lidar readings is proposed. The discrepancy between the experimental results and the theory when sounding inhomogeneous turbulence is established. It is shown that the main contribution to the formation of the turbulent component of a lidar return due to the BSE effect is made by the section of the path in front of the scattering volume. It is proposed to use an approximate formula to restore the structure parameter of the optical turbulence Cn2, in which normalized Cn2 is directly proportional to the return and inversely proportional to the integral determining the dispersion of intensity fluctuations.

Keywords:

atmospheric turbulence, backscatter enhancement effect, turbulent lidar

References:

  1. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravcov Yu.A., Tatarskij V.I. Zakonomernost' uvelicheniya obratnogo rasseyaniya voln. Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
  2. Vinogradov A.G., Kravcov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
  3. Kravcov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
  4. Rаzenkov I.А. Perspektivy primeneniya turbulentnogo UOR-lidara dlya issledovaniya pogranichnogo sloya atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 26–35; Razenkov I.A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 229–238.
  5. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
  6. Gurvich A.S. Lidarnoe pozicionirovanie oblastej povyshennoj turbulentnosti yasnogo neba // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 166–174.
  7. Afanas'ev V.L., Gurvich A.S., Rostov A.P. Eksperimental'noe issledovanie effekta usileniya obratnogo rasseyaniya v turbulentnoj atmosfere // Tez. XVIII Mezhdunar. simpoz. «Optika atmosfery i okeana, Fizika atmosfery». Tomsk: IOA SO RAN, 2012. P. 95–99.
  8. Rаzenkov I.А. Turbulentnyj lidar. I. Konstrukciya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  9. Rаzenkov I.А. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
  10. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo rasseyaniya // Opt. i spektroskop. 2016. V. 120, N 2. P. 339–348.
  11. Vorob’ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
  12. Vorob’ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
  13. Tatarskij V.I. Rasprostranenie voln v turbulentnoj atmosfere. M.: Nauka, 1967. 548 p.
  14. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  15. Razenkov I.A. Optimizaciya parametrov turbulentnogo lidara // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 349–360.
  16. Razenkov I.A. Eksperimental'naya ocenka pika uvelicheniya obratnogo rasseyaniya // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 874–879; Razenkov I.A. Experimental estimation of the backscatter enhancement peak // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 111–116.
  17. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements // Proc. SPIE. 10833. DOI: 10.1117/12.2505183.
  18. Razenkov I.A. Ocenka intensivnosti turbulentnosti iz lidarnyh dannyh // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 32–40; Razenkov I.A. Estimation of the turbulence intensity from lidar data // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 245–253.
  19. Razenkov I.A. Specifika zondirovaniya pogranichnogo sloya atmosfery turbulentnym lidarom // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 643–648; Razenkov I.A. Specifics of sounding the atmospheric boundary layer with a turbulent lidar // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 610–615.
  20. URL: http://mtp5.ru/pdf/mtp5h.compressed.pdf.
  21. Gladkikh V.A., Mamyshev V.P., Odintsov S.L. Eksperimental'nye otsenki strukturnoj harakteristiki pokazatelya prelomleniya opticheskih voln v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 309–318; Gladkikh V.A., Mamyshev V.P., Odintsov S.L. Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 426–435.
  22. Shakina N.P. Gidrodinamicheskaya neustojchivost' v atmosfere. L.: Gidrometeoizdat, 1990. 308 p.