Vol. 34, issue 12, article # 7

Korshunov V. A. Multiple scattering in cirrus clouds and its accounting in processing of stratospheric lidar measurements. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. . DOI: 10.15372/AOO20211207 [in Russian].
Copy the reference to clipboard


Multiple scattering in cirrus clouds occurring in lidar sensing of the atmosphere is studied in Monte-Carlo simulation with the use of model phase functions appropriate to crystal cloud particles of 20–100 mm in size. Critical analysis of some common methods for multiple scattering correction in cirrus clouds is presented. Sensing of cirrus clouds and stratosphere aerosol from the Earth surface with signal calibration at 30 km is numerically simulated. A significant deformation of the altitude profile of the backscattering coefficient at cirrus clouds and above without multiple scattering correction is shown, meanwhile the error in the optical depth of clouds is small. An iteration multiple scattering correction procedure is suggested and verified in numerical simulations. The comparison between the simulation and experimental data is performed.


cirrus clouds, stratosphere, lidar sensing, multiple scattering


  1. Hong Yu., Liu G., Li J.-L.F. Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements // J. Climate. 2016. V. 29. P. 7651–7674.
  2. Baran A.J. A review of the light scattering properties of cirrus // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 1239–1260.
  3. Platt C.M.R. Lidar and radiometric observations of cirrus clouds // J. Atmos. Sci. 1973. V. 30. P. 1191–1204.
  4. Hogan R.J. Fast approximate calculation of multiply scattered lidar returns // Appl. Opt. 2006. V. 45, N 23. P. 5984–5992.
  5. Hoareau C., Keckhut P., Noel V., Chepfer H., Ba­ray J.-L. A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9° N–5.7° E) // Atmos. Chem. Phys. 2013. V. 13. P. 6951–6963.
  6. Thorsen T.J., Fu Q. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part II: Extinction // J. Atmos. Ocean. Technol. 2015. V. 32. P. 2000–2023.
  7. Garnier A., Pelon J., Vaughan M.A., Winker D.M., Trepte C.R., Dubuisson P. Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans // Atmos. Meas. Tech. 2015. V. 8. P. 2759–2774. DOI: 10.5194/amt-8-2759-2015.
  8. Sassen K., Comstock J.M. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: Radiative properties // J. Atmos. Sci. 2001. V. 58. P. 2123–2137.
  9. Seifert P., Ansmann A., Müller D., Wandinger U., Althausen D., Heymsfield A.J., Massie S.T., Schmitt C. Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon // J. Geophys. Res. 2007. V. 112. P. D17205. DOI: 10.1029/2006JD008352.
  10. Metod Monte-Karlo v atmosfernoj optike / pod red. G.I. Marchuka. Novosibirsk: Nauka, 1976. 100 p.
  11. Ice cloud scattering models. URL: http://stc-se.com/data/bbaum/Ice_Models/UV-FarIR_Spectral Models.html (дата обращения: 17.03.2021).
  12. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Benjamin H., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139.
  13. Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. Novosibirsk: SO RAN, 2020. 219 p.
  14. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 15. P. 2881–1884.
  15. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N., Borovoi A.G. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27. N 23. P. 32984–32993.
  16. Zhou С. Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23, N 9. P. 11995–12003.
  17. Winker D. Accounting for multiple scattering in retrievals from space lidar // Proc. SPIE. 2003. V. 5059. P. 128–139.
  18. Fernald F.G. Analysis of atmospheric lidar observations: some comments // Appl. Opt. 1984. V. 23, N 5. P. 652–653.
  19. Platt C.M.R., Young S.A., Austin R.T., Patterson G.R., Mitchell D.L., Miller S.D. LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus // J. Atmos. Sci. 2002. V. 59, N 22. P. 3145–3162.
  20. Gouveia D.A., Barja B, Barbosa H.M.J., Seifert P., Baars H., Pauliquevis T., Artaxo P. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements // Atmos. Chem. Phys. 2017. V. 17. P. 3619–3636.
  21. Kienast-Sjögren E., Rolf C., Seifert P., Krieger U.K., Bei P. Luo B.P., Krämer M., Peter T. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements // Atmos. Chem. Phys. 2016. V. 16. P. 7605–7621.
  22. Ivanov V.N., Zubachev D.S., Korshunov V.A., Sahibgareev D.G. Setevoj lidar AK-3 dlya zondirovaniya srednej atmosfery: ustrojstvo, metody izmerenij, rezul'taty issledovanij // Tr. GGO. 2020. Iss. 598. P. 155–187.
  23. Sassen K., Cho B.S. Subvisual – thin cirris lidar dataset for satellite verification and climatological research // J. Appl. Meteorol. 1992. V. 31. P. 1275–1285.