Vol. 34, issue 09, article # 2

Buldyreva J. V., Troitsyna L. A., Dudaryonok A. S., Lavrent'eva N. N. Broadening coefficients of methyl iodide vibrotational lines induced by nitrogen, oxygen and air pressure. // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. . DOI: 10.15372/AOO20210902 [in Russian].
Copy the reference to clipboard

Abstract:

The nitrogen-, oxygen and air-broadening coefficients of CH3I lines in the n6 band (RP-, PP-, RQ-, PQ-, RR-, and PR-sub-branches) are calculated at room temperature with the rotational quantum numbers 0 ≤ J ≤ 70, 0 ≤ K ≤ 20. Calculations are performed by two methods: the semi-classical method with exact trajectories, adapted for the case of an absorbing molecule such as a symmetric top, colliding with a diatomic homonuclear partner, and the semi-empirical method based on the impact semi-classical theory and using an empirically adjusted factor for the efficiency functions. When comparing with recently published experimental data, a good agreement was obtained for the semi-empirical approach, so that the half-widths can be calculated by this method for reliable use in atmospheric applications.

Keywords:

line profile, line-broadening, symmetric top, methyl iodide

References:

1. Allan B.J., Mc Figgans G., Plane J.M.C., Coe H. Observation of iodine oxide in the remote marine boundary layer // J. Geophys. Res. 2000. V. 105, N D11. P. 14363–14370.
2. Bell N., Hsu L., Jacob D.J., Schultz M.G., Blake D.K., Butler J.H., King D.B., Lobert J.M., Maier-Reimer E. Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models // J. Geophys. Res. 2002. V. 107, N D17. P. 1–12.
3. Yokouchi Y., Nojiri Y., Toom-Sauntry D., Fraser P., Inuzuka Y., Tanimoto H., Nara H., Murakami R., Mukai H. Long-term variation of atmospheric methyl iodide and its link to global environmental change // Geophys. Res. Lett. 2012. V. 39. N 23. P. L23805.
4. Fortin C., Févre-Nollet V., Cousin F., Lebégue P., Louis F. Box modelling of gas-phase atmospheric iodine chemical reactivity in case of a nuclear accident // Atmos. Environ. 2019. V. 214. P. 116838.
5. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J.V., Wagner G., Wilzewski J., Wcislo P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transf. 2017. V. 203. P. 3–69.
6. Jacquinet-Husson N., Armante R., Scott N., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Benner D.C., Boudon V., Brown R., Buldyreva J., Campargue A., Coudert L.H., Devi V.M., Down M.J., Drouin B.J., Fayt A., Fittschen C., Flaud J.-M., Gamache R.R., Harrisonq J.J., Hill C., Hodnebrog Ø., Hu S.-M., Jacquemart D., Jolly A., Jiménez E., Lavrentieva N.N., Liu A.-W., Lodi L., Lyulin O.M., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A., Nielsena C.J., Orphala J., Perevalov V.I., Perrin A., Polovtseva E., Predoi-Cross A., Rotgerd M., Ruth A.A., Yu S.S., Sung K., Tashkun S.A., Tennyson J., Tyuterev Vl.G., Vander Auwera J., Voronin B.A., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327, N 9. P. 31–72.
7. Perrin A., Haykal I., Kwabia Tchana F., Manceron L., Doizi D., Ducros G. New analysis of the ν6 and 2ν3 bands of methyl iodide (CH3I) // J. Mol. Spectrosc. 2016. V. 324, N 6. P. 28–35.
8. Attafi Y., Hassen A.B., Aroui H., Tchana F.K., Manceron L., Doizi D., Vander Auwera J., Perrin A. Self and N2 collisional broadening of rovibrational lines in the ν6 band of methyl iodide (12CH3I) at room temperature: The J and K dependence // J. Quant. Spectrosc. Radiat. Transf. 2019. V. 231, N 7. P. 1–8.
9. Attafi Y., Galalou S., Kwabia Tchana F., Vander Au­wera J., Ben Hassen A., Aroui H., Perrin A., Manceron L., Doizig D. Oxygen broadening and shift coefficients in the ν6 band of methyl iodide (12CH3I) at room temperature // J. Quant. Spectrosc. Radiat. Transf. 2019. V. 239, N 12. P. 106679.
10. Raddaoui E., Troitsyna L., Dudaryonok A., Soulard P., Guinet M., Aroui H., Buldyreva J., Lavrentieva N., Jacquemart D. Line parameters measurements and modeling for the ν6 band of CH3I: A complete line list for atmospheric databases // J. Quant. Spectrosc. Radiat. Transf. 2019. V. 232, N 7. P. 165–179.
11. Raddaoui E., Soulard P., Guinet M., Aroui H., Jacquemart D. Measurements and modeling of air-broadening coefficients for the ν6 band of CH3I // J. Quant. Spectrosc. Radiat. Transf. 2020. V. 246, N 5. P. 106934.
12. Buldyreva J., Guinet M., Eliet S., Hindle F., Mouret G., Bocquet R., Cuisset A. Theoretical and experimental studies of CH3X-Y2 rotational line shapes for atmospheric spectra modelling: Application to room-temperature CH3Cl-O2 // Phys. Chem. Chem. Phys. 2011. V. 13. P. 20326–20334.
13. Bykov A., Lavrentieva N., Sinitsa L. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658.
14. Troitsyna L., Dudaryonok A., Buldyreva J., Filippov N., Lavrentieva N. Room-temperature CH3I-N2 broadening coefficients for the ν6 fundamental // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 266, N 5. P. 107566.
15. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. 1979. V. 40, N 10. P. 923–943.
16. Landau L.D., Lifshits E.M. Course of theoretical physics. Oxford: Pergamon, 1976. 197 p.
17. Werth S., Horsch M., Hasse H. Surface tension of the two center Lennard-Jones plus point dipole fluid // J. Chem. Phys. 2016. V. 144, N 5. P. 54702.
18. Tsao C.J., Curnutte B. Line-width of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transf. 1962. V. 2, N 1. P. 41–91.
19. Carocci S., Di Lieto A., Minguzzi P., Tonelli M. Mea­surement of the electric dipole moment of methyl lodide // J. Mol. Spectrosc. 1990. V. 144, N 2. P. 429–442.
20. Wensink W., Noorman C., Dijkerman H. Self-broadening and self-shifting of J = 0 to 1 and J = 1 to 2 rotational transitions of CH3Br and CH3I // J. Phys. B. 1980. V. 13, N 20. P. 4007–4020.
21. Buldyreva J. Air-broadening coefficients of CH335Cl and CH337Cl rovibrational lines and their temperature dependence by a semi-classical approach // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. P. 315–320.
22. Ivanov S., Nguyen L., Buldyreva J. Comparative analysis of purely classical and semiclassical approaches to collision line broadening of polyatomic molecules: I. C2H2-Ar case // J. Mol. Spectrosc. 2005. V. 233, N 1. P. 60–67.
23. Hoffman K., Davies P. Pressure broadening coefficients of n5 fundamental band lines of CH3I at 7m measured by diode laser absorption spectroscopy. // J. Mol. Spectrosc. 2008. V. 252, N 2. P. 101–107.