Vol. 33, issue 12, article # 11

Saveljeva E. S., Zuev V. V. Role of Arctic sea ice loss in autumn in the polar vortex splitting in winters 1984/1985, 1998/1999, and 2012/2013. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 967–970. DOI: 10.15372/AOO20201211 [in Russian].
Copy the reference to clipboard


The Arctic stratospheric polar vortex usually forms in autumn, reaches its peak intensity in mid-winter, and decays in spring. The polar vortex strength and persistence in the winter–spring period play an important role in stratospheric ozone depletion with the return of solar radiation in late winter. In this study, we investigated the causes of the unusual weakening of the Arctic stratospheric polar vortex in winters 1984/1985, 1998/1999, and 2012/2013. The unusually early (from late December to early January) splitting of the Arctic polar vortex in those years was observed in mid-winter, after which the polar vortex did not recover for at least a month or until next autumn. We showed that such vortex dynamics was caused by an unusually prolonged increase in the activity of vertically propagating planetary waves for more than two weeks in the first half of winter in the lower stratosphere as a result of a record decrease in sea ice area and a corresponding increase in surface temperature in those years in the Beaufort Sea, the Canadian Arctic Archipelago, and the Central Arctic in November.


polar vortex, Arctic sea ice, Beaufort Sea, Canadian Arctic Archipelago, planetary waves


1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613.
2. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophys. Monogr. Ser. 2010. V. 190. P. 43–57.
3. Torre L., Garcia R.R., Barriopedro D., Chandran A. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model // J. Geophys. Res. D. 2012. V. 117, N 4. P. D04110.
4. Ageeva V.Yu., Gruzdev A.N., Elohov A.S., Mohov I.I., Zueva N.E. Vnezapnye stratosfernye potepleniya: statisticheskie harakteristiki i vliyanie na obshchee soderzhanie NO2 i O3 // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 5. P. 545–555.
5. Vargin P. Stratospheric polar vortex splitting in December 2009 // Atmos.-Ocean. 2015. V. 53, N 1. P. 29–41.
6. Zuev V.V., Savelieva E. Arctic polar vortex splitting in early January: The role of the Arctic sea ice loss // J. Atmos. Sol.-Terr. Phys. 2019. V. 195. P. 105137.
7. Zuev V.V., Savelieva E.S. Dynamics of the Arctic polar vortex during the 1984/1985 sudden stratospheric warming // IOP Conf. Series: Earth Environ. Sci. 2019. V. 386. P. 12010.
8. Zuev V.V., Savelieva E.S. Sudden stratospheric war­ming effects during the winter 1998/1999 // Proc. SPIE. 2019. V. 11208. P. 112086F.
9. Zuev V.V., Savelieva E.S. Influence of the upward wave activity flux in the winter 2012/2013 on the Arctic polar vortex // Proc. SPIE. 2019. V. 11208. P. 112088M.
10. Goddard Space Flight Center (GSFC). NASA’s Ozone Hole Watch Web Site (online database). URL: http:// ozonewatch.gsfc.nasa.gov (last access: 19.10.2020).
11. Jaiser R., Dethloff K., Handorf D. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes // Tellus A. 2013. V. 65, N 1. P. 19375.
12. Kim B.-M., Son S.-W., Min S.-K., Jeong J.-H., Kim S.-J., Zhang X., Shim T., Yoon J.-H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss // Nat. Commun. 2014. V. 5. P. 4646.
13. Hoshi K., Ukita J., Honda M., Iwamoto K., Nakamura T., Yamazaki K., Dethloff K., Jaiser R., Handorf D. Poleward eddy heat flux anomalies associated with recent Arctic sea ice loss // Geophys. Res. Lett. 2017. V. 44, N 1. P. 446–454.
14. Sun L., Deser C., Tomas R.A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss // J. Climate. 2015. V. 28, N 19. P. 7824–7845.
15. Fetterer F., Knowles K., Meier W., Savoie M., Windnagel A.K. National Snow and Ice Data Center (NSIDC). Sea Ice Index. Version 3. URL: https://doi.org/10. 7265/N5K072F8 (last access: 19.10.2020).
16. Notz D., Stroeve J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission // Science. 2016. V. 354, N 6313. P. 747–750.
17. Stroeve J., Notz D. Changing state of Arctic sea ice across all seasons // Environ. Res. Lett. 2018. V. 13, N 10. P. 103001.
18. Nakamura T., Yamazaki K., Iwamoto K., Honda M., Miyoshi Y., Ogawa Y., Tomikawa Y., Ukita J. The stratospheric pathway for Arctic impacts on midlatitude climate // Geophys. Res. Lett. 2016. V. 43, N 7. P. 3494–3501.
19. Zhang P., Wu Y., Simpson I.R., Smith K.L., Zhang X., De B., Callaghan P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss // Sci. Adv. 2018. V. 4, N 7. P. eaat6025.