Vol. 33, issue 12, article # 10

Trigub M. V., Vasnev N. A., Kitler V. D., Evtushenko G. S. Use of bistatic laser monitor for high-speed imaging of combustion processes. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 962–966. DOI: 10.15372/AOO20201210 [in Russian].
Copy the reference to clipboard

Abstract:

The paper presents the results of using a laser monitor with an independent illumination source (bistatic laser monitor) to image the processes blocked from an observer by the background light. The maximum shooting speed was 15–103 fps. The possibility to observe the structural transformations in a combustion wave of self-propagating high-temperature synthesis is shown. It is shown that a bistatic laser monitor allows one to significantly improve the image quality (contrast, brightness) of low-contrast objects.

Keywords:

high-speed imaging, active filtration, laser monitor, Ni–Al, synthesis of materials, DC arc, burning

Figures:

References:

  1. Zeleňák M., Říha Z., Jandačka P. Visualization and velocity analysis of a high-speed modulated water jet generated by a hydrodynamic nozzle // Measurement: J. Int. Meas. Confed. 2020. V. 159, N 107753. P. 1–7. DOI: 10.1016/j.measurement.2020.107753.
  2. Smith S.E., Travis K.N., Djeridi H., Obligado M., Cal R.B. Dynamic effects of inertial particles on the wake recovery of a model wind turbine // J. Renewable Energy. 2021. V. 164. P. 346–361. DOI: 10.1016/j.renene.2020.09.037.
  3. Chen W.-L., Min X.-W., Gao D.-L., Guo A.-X., Li H. Experimental investigation of aerodynamic forces and flow structures of bionic cylinders based on harbor seal vibrissa // Exp. Therm. Fluid Sci. 2018. N 99. P. 169–180. DOI: 10.1016/j.expthermflusci.2018.07.033.
  4. Knysh Yu.A., Red'kin E.S., Dmitriev D.N. Eksperimental'noe issledovanie zakruchennoj gazovoj strui metodom tsifrovoj trassernoj vizualizatsii // Vest. Samarskogo gos. aerokosm. un-ta im. akad. S.P. Koroleva. 2011. V. 29, N 5. P. 113–117.
  5. Dulin V.M., Lobasov A.S., Chikishev L.M., Markovich D.M., Hanjalic K. On impact of helical structures on stabilization of swirling flames with vortex breakdown // Flow, Turbul. Combust. 2019. V. 103. P. 887–911. DOI: 10.1007/s10494-019-00063-7.
  6. Zhenkan Wang, Panagiota Stamatoglou, Bo Zhou, Marcus Aldén, Xue-Song Bai, Mattias Richter. Investigation of OH and CH2O distributions at ultra-high repetition rates by planar laser induced fluorescence imaging in highly turbulent jet flames // Fuel. 2018. V. 234. P. 1528–1540. DOI: 10.1016/j.fuel.2018.07.012.
  7. Dulin V.M., Markovich D.M., Chikishev L.M. Issledovanie struktury techeniya obednennyh rezhimov goreniya v model'noj kamere sgoraniya metodom PIV // Sovremennaya nauka. 2012. N 2 (10). P. 324–329.
  8. Dulin V.M., Kozorezo Yu.S., Markovich D.M., Tokarev M.P. Issledovanie gazodinamicheskoj struktury potoka v zakruchennom turbulentnom plameni stereoskopicheskim metodom tsifrovoj trassernoj vizualizatsii // Vestn. NGU. Ser.: Fizika. 2009. V. 4, iss. 3. P. 30–42.
  9. Handbook of Laser Technology: Applications / C.E. Webb, J.D.C. Jones (eds.). California: Institute of Physics, 2004. 2725 p.
  10. Abrosimov G.V., Pol'skij M.M., Saenko V.B. Ispol'zovanie lazernoj sredy dlya fotografirovaniya poverhnostej, zakrytoj sloem plazmy // Kvant. elektron. 1988. V. 15, N 4. P. 850–851.
  11. Opticheskie sistemy s usilitelyami yarkosti / V.I. Bespalova, G.A. Pasmanika (red.). Gor'kij: IPF AN SSSR. 1988. 173 p.
  12. Zemskov K.I., Isaev A.A., Kazaryan M.A., Petrash G.G. Lazernyj proektsionnyj mikroskop // Kvant. elektron. 1974. V. 1, N 1. P. 14–15.
  13. Batenin V.M., Klimovskij I.I., Selezneva L.A. Issledovanie poverhnostej elektrodov ugol'noj dugi vo vremya ee goreniya // Dokl. AN SSSR. 1988. V. 303, N 4. P. 85–86.
  14. Abramov D.V., Galkin A.F., Zharenova S.V., Klimovskij I.I., Prokoshev V.G., Shamanskaya E.L. Vizualizatsiya s pomoshch'yu lazernogo monitora vzaimodejstviya lazernogo izlucheniya s poverhnost'yu steklo- i pirougleroda // Izv. TPU. 2008. V. 312, N 2. P. 97–101.
  15. Trigub M.V., Platonov V.V., Osipov V.V., Evtushenko T.G., Evtushenko G.S. Laser monitors for high speed imaging of materials modification and production // Vacuum. 2017. V 43. P. 486–490.
  16. Trigub M.V., Torgaev S.N., Evtushenko G.S., Troitskij V.O., Shiyanov D.V. Bistaticheskij lazernyj monitor // Pis'ma v ZhTF. 2016. V. 42, iss. 12. P. 51–56.
  17. Trigub M.V., Vasnev N.A., Evtushenko G.S. Bistatic laser monitor for imaging objects and processes // Appl. Phys. B: Lasers Opt. 2020. V. 126, iss. 3. DOI: 10.1007/S00340-020-7387-5
  18. Vysokovol'tnyj modulyator: Pat. 185671. Russia, Vasnev N.A., Trigub M.V., Dimaki V.A., Evtushenko G.S., Troitskij V.O., Vlasov V.V.; IOA SO RAN Patent na poleznuyu model' N 185671. Prioritet 09.10.18. Data gosudarstvennoj registratsii: 13.12.18. Pravoobladatel': IOA SO RAN (RU).
  19. Trigub M.V., Vasnev N.A., Evtushenko G.S., Dimaki V.A. Sistema sinhronizatsii impul'sno-periodicheskogo rezhima raboty aktivnyh sred na samoogranichennyh perekhodah v parah metallov // Pribory i tekhnika eksperimenta. 2019. N 1. P. 30–35. DOI: 10.1134/S0032816218060307.
  20. Trigub M.V., Ogorodnikov D.N., Vasnev N.A. Design of a metal vapor laser power supply // 2016 Intern. Siberian Conf. on Control and Commun. (SIBCON). DOI: 10.1109/SIBCON.2016.7491794.
  21. Batenin V.M., Glina V.Yu., Klimovskij I.I., Selezneva L.A. Primenenie opticheskih sistem s usilitelyami yarkosti dlya issledovaniya poverhnostej elektrodov iz grafita i pirografita vo vremya goreniya dugi // Tekhnika vysokih temperatur. 1991. V. 29, iss. 6. P. 1204–1210.
  22. Pohil P.F., Logachev B.C., Mal'tsev V.M., Seleznev V.A. Gorenie metallizirovannyh kondensirovannyh sistem. M.: IHF AN SSSR, 1962. 294 p.
  23. Rogachev A.S., Mukas'yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku. M.: Fizmatlit. 2012. 400 p.
  24. Kirdyashkin A.I., Kitler V.D., Yusupov R.A., Salamatov V.G., Maksimov Yu.M. Kapillyarnye gidrodinamicheskie yavleniya v protsesse bezgazovogo goreniya // Fizika goreniya i vzryva. 2007. V. 43, N 6. P. 1–7.
  25. Kirdyashkin A.I., Kitler V.D., Salamatov V.G., Yusupov R.A. Osobennosti strukturnoj dinamiki vysokotemperaturnyh metallotermicheskih protsessov na primere sistemy FeO–Al–Al2O3 // Fizika goreniya i vzryva. 2008. V. 44, N 1. P. 81–84.