Vol. 32, issue 10, article # 2

Smalikho I.N., Banakh V.A., Falits A.V., Sherstobitov A.M. Lidar estimates of the degree of anisotropy of wind turbulence in the stable atmospheric boundary layer. // Optika Atmosfery i Okeana. 2019. V. 32. No. 10. P. 808–818 [in Russian].
Copy the reference to clipboard

To determine the degree of anisotropy of wind turbulence from measurements of the Stream Line lidar during experiments, we used a conical scanning by the probing beam, alternately setting the elevation angle equal to 35.3 and 60° after each scan. An experiment with such measurement geometry was carried out at the Basic Experimental Complex of IAO SB RAS in July 2018. The analysis of the measurement results at night in the presence of a low-level jet (LLJ) in the atmosphere showed that the variance (integral scale) of the horizontal component of the wind velocity is 2.26 (3.4) times larger than that of the vertical component. In the central part of the LLJ, the integral scales of the horizontal and vertical wind components are on average equal to 183 and 54 m, respectively.


coherent Doppler lidar, wind turbulence, anisotropy, stable atmospheric boundary layer


  1. Eberhard W.L., Cupp R.E., Healy K.R. Doppler lidar measurement of profiles of turbulence and momentum flux // J. Atmos. Ocean. Technol. 1989. V. 6. P. 809–819.
  2. Frehlich R.G., Hannon S.M., Henderson S.W. Coherent Doppler lidar measurements of wind field statistics // Bound.-Layer Meteorol. 1998. V. 86, N 1. P. 223–256.
  3. Smalikho I.N., Köpp F., Rahm S. Measurement of atmospheric turbulence by 2-mm Doppler lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1733–1747.
  4. Frehlich R.G., Meillier Y., Jensen M.L., Balsley B., Sharman R. Measurements of boundary layer profiles in urban environment // J. Appl. Meteorol. Climatol. 2006. V. 45, N 6. P. 821–837.
  5. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63. P. 2700–2719.
  6. Banakh V.A., Smalikho I.N., Pichugina E.L., Bryuer A. Reprezentativnost' izmerenij skorosti dissipatsii energii turbulentnosti skaniruyushchim kogerentnym doplerovskim lidarom // Optika atmosf. i okeana. 2009. V. 22, N 10. PС. 966–972; Banakh V.A., Smalikho I.N., Pichuginа Е.L., Brewer W.A. Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar // Atmos. Ocean. Opt. 2010. V. 23, N 1. P. 48–54.
  7. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  8. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3147–3167.
  9. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech.: Discuss. 2014. V. 7. P. 10327–10359.
  10. Smalikho I.N., Banakh V.A., Falits A.V., Rudi Yu.A. Opredelenie skorosti dissipatsii energii turbulentnosti iz dannykh, izmerennykh lidarom «Stream Line» v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 901–905.
  11. Newman J.F., Klein P.M., Wharton S, Sathe A., Bonin T.A., Chilson P.B., Muschinski A. Evaluation of three lidar scanning strategies for turbulence measurements // Atmos. Meas. Tech. 2016. V. 9, N 5. P. 1993–2013.
  12. Smalikho I.N., Banakh V.A., Falits A.V. Lidarnye izmereniya parametrov vetrovoj turbulentnosti v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 342–349.
  13. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundar layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
  14. Stephan A., Wildmann N., Smalikho I.N. Izmereniya parametrov vetrovoj turbulentnosti lidarom Windcube 200s v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2018. Т. 31, № 10. С. 815–820.
  15. Smalikho I.N., Banakh V.A., Falits A.V. Lidarnye issledovaniya vetrovoj turbulentnosti pri nalichii v atmosfere nizkourovnevogo strujnogo techeniya // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 716–724.
  16. von Kàrmàn T. Progress in the statistical theory of turbulence // Proc. of the National Academy of Science. 1948. V. 34, N 11. P. 530–539. DOI: 10.1073/pnas.34.11.530.
  17. Smalikho I.N., Banakh V.A. Tochnost' otsenivaniya skorosti dissipatsii energii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondiruyushchim puchkom. Part I. Algoritm obrabotki lidarnykh dannykh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219; Smalikho I.N., Banakh V.A. Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processsing // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 404–410.
  18. Smalikho I. Techniques of wind vector estimation from data measured with a scanning coherent Doppler lidar // J. Atmos. Ocean. Technol. 2003. V. 20, N 2. P. 276–291.
  19. Banakh V.A., Smalikho I.N., Falits V.A. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
  20. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.