Vol. 32, issue 05, article # 3

Dеichuli V. M., Petrova T. M., Ponomarev Yu. N., Solodov A. M., Solodov A. A. Broadening and shift coefficients of water vapor absorption lines in 8650–9020 cm–1 spectral region. // Optika Atmosfery i Okeana. 2019. V. 32. No. 05. P. 358–364. DOI: 10.15372/AOO20190503 [in Russian].
Copy the reference to clipboard

Abstract:

The broadening and shift coefficients of H2O absorption lines are compared for Ar, He, H2, and N2 buffer gases. The broadening and shift coefficients were derived from the analysis of the absorption spectra recorded with a Fourier spectrometer in the spectral range 8650–9020 cm-1 with a spectral resolution of 0.01 cm–1. Using two models of line profiles (Voigt and speed-dependent Voigt profiles) the parameters of the H2O absorption lines were calculated. It is shown that the speed-dependent Voigt profile provides better agreement with experimental data.

Keywords:

broadening and shift coefficients, Fourier spectrometer, water vapor

References:

  1. Hartmann J.-M., Boulet C., Robert D. Collisional effects on molecular spectra: Laboratory experiments and models, consequences for application. Amsterdam, Boston: Elsevier Science, 2008. 406 p.
  2. Lisak D., Cygan A., Bermejo D., Domenech J.L., Hodges J.T., Tran H. Application of the Hartmann–Tran profile to analysis of H2O spectra // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 221–233.
  3. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
  4. Tennyson J., Bernath P.F., Campargue A., Csaszar A.G., Daumont L, Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.N. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) // Pure Appl. Chem. 2014. V. 86, N 12. P. 1931–1943.
  5. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of Ar-broadening parameters of water vapour transitions in a wide spectral region // Mol. Phys. 2017. V. 115, N 14. P. 1642–1656.
  6. Lavrentieva N.N., Petrova T.M., Solodov A.M., Solodov A.A. Measurements of N2-broadening and shifting parameters of the water vapor spectral lines in the second hexad region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2291–2297.
  7. Petrova T.M., Solodov A.M., Starikov V.I., Solo-dov A.A. Measurements and calculations of He-broadening and -shifting parameters of the water vapor transitions of the ν+ ν+ ν3 band // Mol. Phys. 2012. V. 110, N 14. P. 1493–1503.
  8. Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M., Starikov V.I. Measurements and calculations of H2-broadeningand shift parameters of water vapour transitions of the ν1 + ν2 + ν3 band // Mol. Phys. 2018. V. 116, N 10. P. 1409–1420.
  9. Kruglova T.M., Shcherbakov A.P. Avtomaticheskij poisk linij v molekulyarnyh spektrah na osnove metodov neparametricheskoj statistiki. Regulyarizatsiya v otsenke parametrov spektral'nyh linij // Optika i spektroskopiya. 2011. V. 111, N 3. P. 383–386.
  10. Petrova T.M., Solodov A.M., Shcherbakov A.P., Dejchuli V.M., Solodov A.A., Ponomarev Yu.N., Chesnokova T.Yu. Parametry ushireniya linij pogloshcheniya molekuly vody davleniem argona, poluchennye s pomoshch'yu razlichnyh modelej formy kontura // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 821–827; Petrova T.M., Solodov A.M., Shcherbakov A.P., Deichuli V.M., Solodov A.A., Ponomarev Yu.N., Chesnokova T.Yu. Parameters of broadening of water molecule absorption lines by argon derived using different line profile models // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 123–128.
  11. Boone C.D. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105. P. 525–532.
  12. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Chris Benner D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.