Vol. 32, issue 04, article # 3

Tarasenkov M.V., Belov V.V., Poznaharev E.S. Statistical simulation of the characteristics of diffuse underwater optical communication. // Optika Atmosfery i Okeana. 2019. V. 32. No. 04. P. 273–278 [in Russian].
Copy the reference to clipboard
Abstract:

Using an algorithm of the Monte Carlo method with modified double local estimation, the impulse response of the link of non-line-of-site underwater communication on scattered radiation is simulated for base distances between the source and the receiver from 10 to 100 m at a wavelength of 0.5 mm. The received radiation power and the maximal repetition frequency of pulses transmitted through the communication link are estimated based on the impulse response.

Keywords:

underwater optical communication, NLOS diffuse link, Monte-Carlo method

References:

   1.  Kaushal H., Kaddoum G. Underwater Optical Wireless Communication // IEEE ACCESS. 2016. V. 4. P. 1518–1547.
   2. Arnon S., Kedar D. Non-line-of-sight underwater optical wireless communication network // J. Opt. Soc. Am. A. 2009. V. 26, N 3. P. 530–539.
   3. Jasman F., Green R.J. Monte Carlo Simulation for Underwater Optical Wireless Communications // Proc. 2013 2nd Intern. Workshop on Opt. Wireless Commun. 2013. P. 113–117.
   4. Li J., Ma Y., Zhou Q., Zhou B., Wang H. Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation // J. Opt. 2012. V. 14, N 1. P. 1–7.
   5. Jaruwatanadilok S. Underwater Wireless Optical Communication Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory // IEE J. Sel. Areas Commun. 2008. V. 26, N 9. P. 1620–1627.
   6. Hanson F., Radic S. High bandwidth underwater optical communication // Appl. Opt. 2008. V. 47, N 2. P. 277–283.
   7. Gabriel C., Khalighi M.A., Bourennane S., Leon P., Rigaud V. Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems // J. Opt. Commun. Netw. 2013. V. 5, N 1. P. 1–12.
   8. Gabriel C., Khalighi M.A., Bourennane S., Leon P., Rigaud V. Channel Modeling for Underwater Optical Communication // 2011 IEEE Globecom Workshops. 2011. P. 833–837.
   9. Doniec M., Detweiler C., Vasilescu I., Rus D. Using Optical Communication for Remote Underwater Robot Operation // IEEE/RSJ 2010 Intern. Conf. Intelligent Robots and Systems. 2010. P. 4017–4022.
10. Neuner B., Pascoguin B.M. A novel method to optimize the wavelength for underwater free-space optical communications // Proc. SPIE. 2014. V. 9224, N 922417. P. 1–8.
11. Dalgleish F.R., Shirron J.J., Rashkin D., Giddings T.E., Dalgleish A.K.V., Cardei I., Ouyang B., Caimi F.M., Cardei M. Physical layer simulator for undersea free-space laser communications // Opt. Eng. 2014. V. 53(5), N 051410. P. 1–14.
12. Tian B., Zhang F., Tan X. Design and Development of an LED-based Optical Communication System for Autonomous Underwater Robots // 2013 IEEE/ASME Intern. Conf. Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing. 2013. P. 1558–1563.
13. Tang S., Dong Y., Zhang X. Impulse Response Modeling for Underwater Wireless Optical Communication Links // IEEE Trans. Commun. 2014. V. 62, N 1. P. 226–234.
14. Majumdar A.K., Siegenthaler J., Land P. Analysis of Optical Communications through the Random Air-Water interface: Feasibility for Under-Water Communications // Proc. SPIE. 2012. V. 8517, N 85170T. Р. 1–13.
15. Doniec M., Angermann M., Rus D. An End-to-End Signal Strength Model for Underwater Optical Communications // IEEE J. Oceanic Eng. 2013. V. 38, N 4. P. 743–757.
16. Choudhary A., Jagadeesh V.K., Muthuchidambaranathan P. Path loss analysis of NLOS Underwater Wireless Optical Communication channel // 2014 Intern. Conf. on Electronics and Commun. Systems. 2014. P. 1–4.
17. Jagadeesh V.K., Choudhary A., Bui F.M., Muthuchidambaranathan P. Characterization of Channel Impulse Responses for NLOS Underwater Wireless Optical Communications // 2014 Fourth Intern. Conf. on Advances in Computing and Communications. 2014. P. 77–79.
18. Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-ehlektronnye bistaticheskie kommunikatsionnye sistemy. Polevye ehksperimenty na iskusstvennom i estestvennom vodoemah // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 82–87; Bеlov V.V., Аbramochkin V.N., Gridnev Yu.V., Kudryavtsev А.N., Таrаsеnkov М.V., Fеdosov А.V. Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 366–371.
19. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, Sib. otd-e, 1976. 284 p.
20. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskij V.O., Shiyanov D.V. Atmosfernye bistaticheskie kanaly svyazi s rasseyaniem. Part 1. Metody issledovaniya // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 261–267; Bеlov V.V., Таrаsеnkov М.V., Аbramochkin V.N., Ivanov V.V., Fеdosov А.V., Тroitskii V.О., Shiyanov D.V. Atmospheric bistatic communication channels with scattering. Part 1. Methods of study // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 364–370.
21. Belov V.V., Tarasenkov M.V. Tri algoritma statisticheskogo modelirovaniya v zadachah opticheskoj svyazi na rasseyannom izluchenii i bistaticheskogo zondirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 397–403; Bеlov V.V., Таrаsеnkov М.V. Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 533–540.
22. Tarasenkov M.V., Belov V.V. Sravnenie trudoemkosti algoritmov statisticheskogo modelirovaniya impul'snoj reaktsii kanala bistaticheskoj lazernoj svyazi na rasseyannom izluchenii i bistaticheskogo lazernogo zondirovaniya // Vychisl. tekhnol. 2017. V. 22, N 3. P. 91–102.
23. Tarasenkov M.V., Belov V.V., Poznaharev E.S. Modelirovanie protsessa peredachi informatsii po atmosfernym kanalam rasprostraneniya rasseyannogo lazernogo izlucheniya // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 371–376; Таrаsеnkov М.V., Bеlov V.V., Poznakharev E.S. Simulation of information transfer through atmospheric channels of scattered laser radiation propagation // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 412–416.
24. Akulova O.B., Bukatyj V.I., Sutorihin I.A. Vliyanie komponentov prirodnoj vody na spektral'nyj pokazatel' oslableniya sveta (na primere vodoemov Altajskogo kraya) // Optika atmosf. i okeana. 2017. V. 30. N 5, P. 414–419.
25. Kukushkin A.S. Prostranstvenno-vremennaya izmenchivost' raspredeleniya prozrachnosti vod v severo-zapadnoj chasti CHernogo morya // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 750–762.
26. Rostovtseva V.V., Goncharenko I.V., Konovalov B.V., Alyukaeva A.F. Operativnaya otsenka sostoyaniya pribrezhnyh morskih akvatorij po dannym passivnogo opticheskogo zondirovaniya poverhnosti vody s borta sudna // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1017–1022; Rоstovtsevа V.V., Goncharenkо I.V., Kоnоvalov B.V., Аlukaevа А.F. Rapid estimation of the ecological state of coastal water areas based on shipboard passive remote optical sensing of the water surface // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 225–232.
27. Zapevalov A.S. Opredelenie statisticheskih momentov uklonov morskoj poverhnosti opticheskimi skanerami // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 789–793; Zapevalov А.S. Determination of the statistical moments of sea-surface slopes by optical scanners // Atmos. Ocean. Opt. 2018. V. 31, N N 1. P. 91–95.
28. Optika okeana i atmosfery / pod red. K.S. SHifrina. M.: Nauka, 1981. 231 p.
29. Optika okeana. V. 1. Fizicheskaya optika okeana / pod red. A.S. Monina. M.: Nauka, 1983. 372 p.
30. Optika okeana. V. 2. Prikladnaya optika okeana / pod red. A.S. Monina. M.: Nauka, 1983. 236 p.
31. Haipeng D., Chen G., Arun K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Select. Areas Commun. 2009. V. 27, N 9. Р. 1535–1544.
 

Back