Vol. 32, issue 03, article # 4

Samokhvalov I.V., Bryukhanov I.D., Shishko V.A., Kustova N.V., Nie E.V., Konoshonkin A.V., Loktushin O.Ju., Timofeev D.N. Estimation of microphysical characteristics of contrails from polarization lidar data: Theory and experiment. // Optika Atmosfery i Okeana. 2019. V. 32. No. 03. P. 193–201 [in Russian].
Copy the reference to clipboard
Abstract:

The technique for detecting and studying the optical and microphysical characteristics of aircraft condensation trails using the unique altitude polarization lidar of the National Research Tomsk State University (NR TSU) is described. The microstructure parameters of the ensembles of crystalline particles were estimated by comparing the elements of the backscattering light matrices (BSLM) obtained theoretically and experimentally. It is shown that the contrail appeared behind an aircraft formed in the atmosphere in 30–40 minutes after the emission of fuel combustion products from engines consists of small randomly oriented particles of ice, mostly columnar.

Keywords:

contrails, polarization lidar, backscattering phase matrix

References:

   1.  Gorshkov V.G., Dovgalyuk Yu.A., Ivlev L.S. Fizicheskie osnovy ekologii. SPb.: Izd-vo Sankt-Peterburskogo un-ta, 2005. 252 p.
   2. Minnis P., Young D.F., Garber D.P., Nguyen L., Smith Jr.W.L., Palikonda R. Transformation of contrails into cirrus during SUCCESS // Geophys. Res. Let. 1998. V. 25, N 8. P. 1156–1160.
   3. Radiatsionnye svoystva peristyh oblakov / pod red. E.M. Feygel'son. M.: Nauka, 1989. 223 p.
   4. Borovoi A., Balin Y., Kokhanenko G., Penner I., Konoshonkin A., Kustova N. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar // Opt. Express. 2014. V. 22, N 20. P. 24566–24573.
   5. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
   6. Cho H.M., Yang P., Kattawar G.W., Nasiri S.L., Hu Y., Minnis P., Trepte C., Winker D. Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements // Opt. Express. 2014. V. 16, N 6. P. 3931–3948.
   7. Samokhvalov I.V., Bryukhanov I.D., Nasonov S.V., Zhivotenyuk I.V., Stykon A.P. Investigation of the optical characteristics of cirrus clouds with anomalous backscattering // Russ. Phys. J. 2013. V. 55, N 8. P. 925–929.
   8. Samohvalov I.V., Kaul' B.V., Nasonov S.V., Zhivotenyuk I.V., Bryuhanov I.D. Matritsa obratnogo rasseyaniya sveta zerkal'no otrazhayushchih sloev oblakov verhnego yarusa, obrazovannyh kristallicheskimi chastitsami, preimushchestvenno orientirovannymi v gorizontal'noy ploskosti // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 403–411.
   9. Sokovyh O.V., Samohvalov I.V. Sistemnaya integratsiya eksperimental'nogo oborudovaniya vysotnogo polyarizatsionnogo lidara // Optika atmosf. i okeana. 2013. V. 26, N 10. P. 891–896.
10. Kaul' B.V., Volkov S.N., Samohvalov I.V. Rezul'taty issledovaniy kristallicheskih oblakov posredstvom lidarnyh izmereniy matrits obratnogo rasseyaniya sveta // Optika atmosf. i okeana. 2003. V. 16, N 4. P. 354–361.
11. Kaul' B.V., Samohvalov I.V. Polyarizatsionnye lidarnye izmereniya harakteristik atmosfernogo aerozolya // Regional'nyy monitoring atmosfery. Part 2. Novye pribory i metodiki izmereniy. Tomsk: Spektr, 1997. P. 34–58.
12. Volkov S.N., Kaul' B.V., Samohvalov I.V. Metodika obrabotki rezul'tatov lidarnyh izmereniy matrits obratnogo rasseyaniya sveta // Optika atmosf. i okeana. 2002. V. 15, N 11. P. 982–986.
13. Samohvalov I.V., Volkov S.N., Bryuhanov I.D. Programmno-algoritmicheskiy kompleks korrektsii intensivnosti lidarnogo signala na statisticheskiy i fonovyy shum, na proschety i posledeystvie fotoelektronnyh umnozhiteley priemnyh kanalov lidara // Svidetel'stvo RF o gosudarstvennoy registratsii programmy dlya EVM N 2016662035; Zaregistrirovana 28.10.2016 year.; Zayavka N 2016619429; Postupl. 02.09.2016 year.
14. Samokhvalov I.V., Nasonov S.V., Stykon A.P., Bryukhanov I.D., Borovoi A.G., Volkov S.N., Kustova N.V., Konoshonkin A.V. Investigation of phase matrices of cirrus containing ensembles of oriented ice particles // Proc. SPIE. 2014. V. 9292. 92922M. DOI: 10.1117/12.2075562.
15. Samokhvalov I.V., Kaul B.V., Bryukhanova V.V., Doroshkevich A.A., Zege E.P., Chaikovskaya L.I., Malinka A.V. Correction for distortions in lidar measurements of cloud backscattering phase matrices caused by multiple scattering // Russ. Phys. J. 2008. V. 5, N 9. P. 958–964.
16. Doroshkevich A.A., Bryukhanova V.V. On the effect of cloud microstructure on the polarization characteristics of double scattering lidar return // Proc. SPIE. 2015. V. 9680. 968053. DOI: 10.1117/12.2206001.
17. Samohvalov I.V., Volkov S.N., Bryuhanov I.D. Programmno-algoritmicheskiy kompleks rascheta i privedeniya k ploskosti vertikal'noy simmetrii matrits obratnogo rasseyaniya sveta oblakov verhnego yarusa na osnove dannyh polyarizatsionnogo lazernogo zondirovaniya // Svidetel'stvo RF o gosudarstvennoy registratsii programmy dlya EVM N 2017611252; Zaregistrirovana 01.02.2017 year.; Zayavka N 2016663186; Postupl. 02.12.2016 year.
18. Kaul B.V., Samokhvalov I.V., Volkov S.N. Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar // Appl. Opt. 2004. V. 43, N 36. P. 6620–6628. DOI: 10.1364/AO.43.006620.
19. University of Wyoming [Electronic resource]. URL: http://weather.uwyo.edu (last access: 5.12.18).
20. Bryuhanov I.D. Programmno-algoritmicheskiy kompleks planirovaniya lidarnyh eksperimentov // Svidetel'stvo RF o gosudarstvennoy registratsii programmy dlya EVM N 2019610524; Zaregistrirovana 11.01.2019 year.; Zayavka N 2018664729; Postupl. 20.12.2018 year.
21. Samohvalov I.V., Bryuhanov I.D., Zhivotenyuk I.V., Nasonov S.V., Kirillov N.S., Stykon A.P. Opredelenie matritsy obratnogo rasseyaniya sveta kondensatsionnogo sleda samoleta // Optika atmosf. i okeana. Fizika atmosfery: Materialy XXII Mezhdunar. simp. Tomsk: Izd-vo IOA SO RAN, 2016. P. C465–C468. 1 elektron. opt. disk (CD-ROM).
22. Samohvalov I.V., Bryuhanov I.D., Zhivotenyuk I.V., Ni E.V., Stykon A.P. Opticheskie harakteristiki kondensatsionnyh sledov samoletov // Optika atmosf. i okeana. Fizika atmosfery: Materialy XXIV Mezhdunar. simp. Tomsk: Izd-vo IOA SO RAN. 2018. P. C358–C361. 1 elektron. opt. disk (CD-ROM).
23. Flightradar24. Live Air Traffic [Electronic resource]. URL: https://www.flightradar24.com (last access: 5.12.18).
24. Bryuhanov I.D. Problema interpretatsii dannyh polyarizatsionnogo lazernogo zondirovaniya kondensatsionnyh sledov samoletov: otsenka meteoparametrov // Tr. Voenno-kosmicheskoy akademii im. A.F. Mozhayskogo. 2018. Issue 662. P. 102–106.
25. URL: ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/Quasi-horisontally_oriented_plate (last access: 5.12.18).
26. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20, N 27. P. 28222–2823.
27. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation // J. Atmos. Sci. 1994. V. 51, N 6. P. 817–832.
28. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27, N 6. P. 919–926.
29. Shishko V.A., Bryuhanov I.D., Ni E.V., Kustova N.V., Timofeev D.N., Konoshonkin A.V. Algoritm interpretatsii matrits obratnogo rasseyaniya sveta peristyh oblakov dlya vosstanovleniya ih mikrofizicheskih parametrov // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 186–192.
30. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15, N 7. P. 3933–3956. DOI: 10.5194/acp-15-3933-2015.
31. Samokhvalov I.V., Bryukhanov I.V., Soojin P., Zhivotenyuk I.V., Ni E.V., Stykon A.P. Optical characteristics of contrails according to polarization lidar sensing data // Proc. SPIE. 2018. V. 10833. 108335J. DOI: 10.1117/12.2504517.
 

Back