Vol. 32, issue 03, article # 2

Sinitsa L. N., Shcherbakov A. P., Bykov A. D. Automatic analysis of Fourier transform spectra using algorithms for image recognition. // Optika Atmosfery i Okeana. 2019. V. 32. No. 03. P. 178–185. DOI: 10.15372/AOO20190302 [in Russian].
Copy the reference to clipboard

Abstract:

The WxSpe software package is presented, which automatically analyzes and reconstructs the parameters of spectral lines based on the multispectral approach. The software package developed uses the methods of the theory of pattern recognition and is a taught. The package allows one to automatically process large amounts of information, find lines in the spectra solve the inverse problem – determine the intensity, centers, and coefficients of broadening and shift of spectral lines or groups of overlapping lines. In the package, calculations with various model shape of the contour are performed. The numerical analysis of a typical situation is carried out, when the width of the apparatus function of the spectrometer turns out to be comparable or even larger than the line width. As a practically important example, measurements and analysis of the absorption spectra of pure water vapor and a mixture with nitrogen in the spectral range of about 0.59 mm are made; the comparison with the results of previous measurements and calculations is presented.

Keywords:

Fourier transform spectroscopy, water vapor absorption spectra, line position, line strength, molecule Н216О, broadening, shift

References:

  1.    Voigt W. Über das Gesetz Intensitätsverteilung inner halb der Linien eines Gasspektrums. München; Berlin: Sitzber. Bayr Akad., 1912.
  2.  Rautian S.G., Sobel'man I.I. Vliyanie stolknoveniy na doplerovskoe ushirenie spektral'nyh liniy // Uspekhi fiz. nauk. 1966. V. 90. P. 209.
  3.  Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectros. Radiat. Transfer. 2013. V. 129. P. 89.
  4.   Hartmann J.-M., Boulet C., Robert D. Collisional effects on molecular spectra // Laboratory Experiments and Models, Consequences for Applications. Amsterdam; Netherlands: Elsevier Science, 2008. 432 p.
  5.   Kochanov V.P. Combined effect of small- and large angle scattering collisions on a spectral line shape // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 159. P. 32.
  6.   Tennyson J., Bernath P.F., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Ha Tran, Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngoc Noa Ngo, Polyansky O.K. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) // Pure Appl. Chem. 2014. V. 86, N 12. P. 1931–1943.
  7.    Benner D.C., Rinsland C.P., Malathy D.V., Devi V.M., Smith M.A.H., Atkins D. A multispectrum nonlinear least squares fitting technique // J. Quant. Spectrosc. Radiat. Transfer. 1995. V. 53, N 6. P. 705.
  8.   Jacquemart D., Mandin J.-Y., Dana V., LRégalia-Jarlot. X. Thomas P., von der Heyden. Multispectrum fitting measurements of line parameters for 5-mm cold bands of acetylene // J. Quant. Spectrosc. Radiat. Transfer. 2002. V. 75, N 4. P. 397–422.
   9.   Lyulin O.M. Determination of spectral line parameters from several absorption spectra with the MultiSpectrum fitting computer code // Atmos. Ocean. Opt. 2015. V. 28, iss. 6. P. 487–495.
10.    Ayzerman M.A., Bravermann E.I., Rozonoer L.I. Metod potentsial'nyh funktsiy v zadachah obucheniya mashin. M.: Nauka, 1970.
11.     Levin L.L. Vvedenie v teoriyu raspoznavaniya obrazov: ucheb. posobie. Tomsk: Izd-vo Tom. gos. un-ta, 1982. 97 p.
12.    Nevel'son M.B., Has'minskiy R.Z. Stohasticheskaya approksimatsiya i rekurrentnoe otsenivanie. M.: Nauka, 1972. 304 p.
13.    Tihonov A.N., Arsenin V.YA. Metody resheniya nekorrektnyh zadach. M.: Nauka, 1979. 288 p.
14.     Elyashberg M.E., Gribov L.A., Serov V.V. Molekulyarnyy spektral'nyy analiz i EVM. M.: Nauka, 1980, 307 p.
15.    Shcherbakov А.П. Primenenie metodov teorii raspoznavaniya obrazov dlya identifikatsii liniy v kolebatel'no-vrashchatel'nyh spektrah // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 947–958.
16.    Kruglova T.V., Shcherbakov T.V. Avtomaticheskiy poisk liniy v molekulyarnyh spektrah na osnove metodov neparametricheskoy statistiki. Regulyarizatsiya v otsenke parametrov spektral'nyh liniy // Opt. i spektrosk. 2011. V. 111, N 3. P. 383.
17.  Shcherbakov A.P., Pshenichnicov A.M. Computer-aided system for automatic peak searching and contour fitting in molecular spectra // SPIE. 2000. N 4341. P. 60–63.
18.   Hase F., Blumenstock T., Paton-Walsh C.-P. Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software // Appl. Opt. 1999. V. 38, N 15. P. 3417–3422.
19.   Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campar-gue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 Molecular Spectroscopic Database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–14.
20.   Serdukov V.I., Sinitsa L.N. New features of an FT spectrometer using LED sources // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 248–252.
21.   Coheur P.-F., Fally S., Carleer C., Clerbaux C., Colina R., Jenouvrier A., Merienne M.-F., Hermans C., Vandaele A.C. New water vapor line parameters in the 26,000–13,000 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2002. V. 74. P. 493–510.
22.   Tennyson J., Bernath P.F., Brown L.R., Campargue A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Naumenko O.V., Polyansky O.L., Rothman L.S., Vandaele A.C., Zobov N.F., Al Derzi A.R., Fabri C., Fazliev A.Z., Furtenbacher T., Gordon I.E., Lod L., Mizus I.I. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 117. P. 29–58.
23.  Camy-Peyret C., Flaud J.-M., Mandin J.-Y., Chevillard J.P., Brault J., Ramsay D.A., Vervloet M., Chauville J. The high-resolution spectrum of water vapor between 16500 and 25250 cm-1 // J. Mol. Spectrosc. 1985. V. 113, N 1. P. 208–228
24.    Bykov A.D., Lavrentieva N.N., Mishina T.P., Sinitsa L.N., Barber R.J., Tolchenov R.N., Tennyson J. Water vapor line width and shift calculations with accurate vibration-rotation wave functions // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 1834.