Vol. 32, issue 02, article # 10

Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. The influence of the substrate material on the sensitivity of the Raman lidar method for detecting traces of high-energy materials. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 156–161 [in Russian].
Copy the reference to clipboard
Abstract:

Experimental results on the remote detection of surface traces of some high energetic materials using a Raman lidar constructed on the basis of an excimer KrF laser with the narrow generation line and a multi-channel spectrum analyzer based on the diffraction spectrograph and a time gated ICCD camera are presented. The sensitivity of the lidar system for a detection range of 10 m was evaluated. The influence of a substrate material on the sensitivity of the detection method is analyzed.

Keywords:

lidar, Raman scattering, remote detection, high energetic materials

References:

    1.    Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar Detection of Explosive Vapors in the Atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
   2. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
   3. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 20 °C: A unique scheme for remote detection of explosives // Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
   4. Skvortsov L.A. Lazernye metody distantsionnogo obnaruzheniya himicheskih soedinenij na poverhnosti tel. M.: Tekhnosfera, 2014. 208 p.
   5. Ageev B.G., Klimkin A.V., Kuryak A.N., Osipov K.YU., Ponomarev Yu.N. Distantsionnyj detektor opasnyh veshchestv na osnove perestraivaemogo 13С16О2 lazera // Optika atmosf. i okeana. 2017. V. 30, N 3. P. 204–208.
   6. Baldin M.N., Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Gruznov V.M., Zharkov V.I., Panchenko Yu.N., Pryamov M.V., Sakovich G.V. Ob effektivnosti sovmestnogo distantsionnogo lazernogo i gazohromatograficheskogo obnaruzheniya sledov vzryvchatyh veshchestv // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 988–994.
   7. Gresham G.L., Davies J.P., Goodrich L.D., Blackwood L.G., Liu B.Y.H., Thimsen D., Yoo S.H., Hallowell S.F. Development of particle standards for testing detection systems: Mass of RDX and particle size distribution of composition 4 residues // Proc. SPIE Int. Soc. Opt. Eng. 1994. V. 2276. P. 34–44.
   8. Chirico R., Almaviva S., Colao F., Fiorani L., Nuvoli M., Murra D., Menicucci I., Angelini F., Palucci A. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications // Sensors. 2016. V. 16, N 1. P. 1–18.
   9. Carter J.C., Angel S.M., Lawrence-Snyder M., Scaffidi J., Whipple R.E., Reynolds J.G. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument // Appl. Spectrosc. 2005. V. 59, N 6. P. 769–775.
10. Jander P., Noll R. Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy // Appl. Spectrosc. 2009. V. 63, N 5. P. 559–563.
11. Moros J., Lorenzo J.A., Novotný K., Laserna J.J. Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting // J. Raman Spectrosc. 2013. V. 44, N 1. P. 121–130.
12. Pettersson A., Johansson I., Wallin S., Nordberg M., Ostmark H. Near real time standoff detection of explosives in a realistic outdoor environment at 55 m distance // Propellants, Explo., Pyrotech. 2009. V. 34, N 4. P. 297–306.
13. Pettersson A., Wallin S., Östmark H., Ehlerding A., Johansson I., Nordberg M., Ellis H., Al-Khalili A. Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection // Proc. SPIE. 2010. V. 7664. P. 76641K.
14. Forest R., Babin F., Gay D., Hô N., Pancrati O., Deblois S., Désilets S., Maheux J. Use of a spectroscopic lidar for standoff explosives detection through Raman spectra // Proc. SPIE. 2012. V. 8358. P. 83580M-1–10.
15. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Eksperimental'naya otsenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Experimental estimation of the sensitivity of the UV Raman lidar // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 320–325.
16. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Dynamics of the laser fragmentation/laser-induced fluorescence process in nitrobenzene vapors // Appl. Opt. 2018. V. 57, N 31. P. 9381–9387.
17. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Technique for increasing the selectivity of the method of laser fragmentation/laser-induced fluorescence // Russ. Phys. J. 2018. V. 61, N 1. P. 25–28.
18. Lazernyj kontrol' atmosfery / pod red. E.D. Hinkli. M.: Mir, 1979. 416 p.
19. GOST 31581-2012. Lazernaya bezopasnost'. Obshchie trebovaniya bezopasnosti pri razrabotke i ekspluatatsii lazernyh izdelij. M.: Standartinform, 2013. 20 p.
20. SanPiN 5804-91. Sanitarnye normy i pravila ustrojstva i ekspluatatsii lazerov. M.: 1992. 61 p.
21. Malicet J., Daumont D., Charbonnier J., Parisse C., Chakir A., Brion J. Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence // J. Atmos. Chem. 1995. V. 21, N 3. P. 263–273.
22. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Distantsionnoe obnaruzhenie sledov vysokoenergeticheskih materialov na ideal'noj podlozhke s pomoshch'yu effekta SKR // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 691–695; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect // Atmos. Ocean. Opt. 2017. V. 30, N. 6. P. 604–608.
23. Panchenko Y.N., Andreev M.V., Dudarev V.V., Ivanov N.G., Pavlinskii A.V., Puchikin A.V., Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Losev V.F. Narrow-band tunable laser for a lidar facility // Russ. Phys. J. 2012. V. 55, N 6. P. 609–615.
24. Fleger Y., Nagli L., Gaft M., Rosenbluh M. Narrow gated Raman and luminescence of explosives // J. Lumin. 2009. V. 129, N 9. P. 979–983.
25. Gaft M., Nagli L. UV gated Raman spectroscopy for standoff detection of explosives // Opt. Mater. 2008. V. 30, N 11. P. 1739–1746.
26. Seuthe T., Grehn M., Mermillod-Blondin A., Eichler H.J., Bonse J., Eberstein M. Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy // Opt. Mater. Express. 2013. V. 3, N 6. P. 755–764.
27. Yadav A.K., Singh P. A review of the structures of oxide glasses by Raman spectroscopy // RSC Adv. 2015. V. 5. P. 67583–67609.
28. Al-Saidi W.A., Asher S.A., Norman P. Resonance Raman spectra of TNT and RDX using vibronic theory, excited-state gradient, and complex polarizability approximations // J. Phys. Chem. A. 2012. V. 116. P. 7862−7872.
 

Back