Content of issue 11, volume 31, 2018

  1. Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of microstructure parameters of the near-surface aerosol in the summer period retrieved by inverting the spectral extinction measurements along a horizontal path in Tomsk. Part I. Geometric cross section of fine and coarse particles. P. 857–866
    Bibliographic reference:
    Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of microstructure parameters of the near-surface aerosol in the summer period retrieved by inverting the spectral extinction measurements along a horizontal path in Tomsk. Part I. Geometric cross section of fine and coarse particles. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 857–866 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Veretennikov V.V., Men’shchikova S.S. and Uzhegov V.N. Variability in Parameters of the Near-Surface Aerosol Microstructure in Summer According to Results of Inversion of Measurements of Spectral Extinction of Light on a Horizontal Path in Tomsk: Part I–Geometrical Cross Section of Fine and Coarse Particles // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 128–137.
    Copy the reference to clipboard    Open the english version
  2. Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of microstructure parameters of the near-surface aerosol in the summer period retrieved by inverting the spectral extinction measurements along a horizontal path in Tomsk. Part II. Volume concentration and mean radius of particles. P. 867–875
    Bibliographic reference:
    Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of microstructure parameters of the near-surface aerosol in the summer period retrieved by inverting the spectral extinction measurements along a horizontal path in Tomsk. Part II. Volume concentration and mean radius of particles. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 867–875 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Veretennikov V.V., Men’shchikova S.S. and Uzhegov V.N. Variability in Parameters of the Near-Surface Aerosol Microstructure in Summer according to Results of Inversion of Measurements of Spectral Extinction of Light on a Horizontal Path in Tomsk: Part II–Volume Concentration and Mean Radius of Particles // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 138–146.
    Copy the reference to clipboard    Open the english version
  3. Troshkin D.N., Pavlov V.E. Statistical model of cloud optical thickness in specific Yamal areas using satellite-based data. P. 876–880
    Bibliographic reference:
    Troshkin D.N., Pavlov V.E. Statistical model of cloud optical thickness in specific Yamal areas using satellite-based data. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 876–880 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Troshkin D.N. and Pavlov V.E. Statistical Model of Cloud Optical Depths in Certain Zones of the Yamal Peninsula Region Using Satellite Data // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 147–151.
    Copy the reference to clipboard    Open the english version
  4. Kaloshin G.A. Development of the MaexPro aerosol model of marine and coastal atmosphere surface laye. P. 881–887
    Bibliographic reference:
    Kaloshin G.A. Development of the MaexPro aerosol model of marine and coastal atmosphere surface laye. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 881–887 [in Russian].
    Copy the reference to clipboard
  5. Banakh V.A., Falits A.V. Variations in the coherent lidar echo signal mean power in a turbulent atmosphere. P. 888–894
    Bibliographic reference:
    Banakh V.A., Falits A.V. Variations in the coherent lidar echo signal mean power in a turbulent atmosphere. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 888–894 [in Russian].
    Copy the reference to clipboard
  6. Sklyadneva T.K., Belan B.D., Rasskazchikova T.M., Arshinova V.G. Change in the synoptic regime of Tomsk in the late XX – early XXI centuries. P. 895–901
    Bibliographic reference:
    Sklyadneva T.K., Belan B.D., Rasskazchikova T.M., Arshinova V.G. Change in the synoptic regime of Tomsk in the late XX – early XXI centuries. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 895–901 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Sklyadneva T.K., Belan B.D., Rasskazchikova T.M. and Arshinova V.G. Change in the Synoptic Regime of Tomsk in the Late 20th–Early 21st Centuries // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 171–176.
    Copy the reference to clipboard    Open the english version
  7. Chubarova N.E., Timofeev Yu.M., Virolainen Ya.A., Polyakov A.V. Estimates of UV indices during the periods of reduced ozone content over Siberia in winter–spring 2016. P. 902–905
    Bibliographic reference:
    Chubarova N.E., Timofeev Yu.M., Virolainen Ya.A., Polyakov A.V. Estimates of UV indices during the periods of reduced ozone content over Siberia in winter–spring 2016. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 902–905 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Chubarova N.E., Timofeev Yu.M., Virolainen Ya.A. and Polyakov A.V. Estimates of UV Indices During the Periods of Reduced Ozone Content over Siberia in Winter–Spring 2016 // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 177–179.
    Copy the reference to clipboard    Open the english version
  8. Kovadlo P.G., Lukin V.P., Shikhovtsev A.Yu. The development of the model of turbulent atmosphere on the astroplatform of Large Solar Vacuum Telescope as applied to image adaptation. P. 906–910
    Bibliographic reference:
    Kovadlo P.G., Lukin V.P., Shikhovtsev A.Yu. The development of the model of turbulent atmosphere on the astroplatform of Large Solar Vacuum Telescope as applied to image adaptation. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 906–910 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Kovadlo P.G., Lukin V.P. and Shikhovtsev A.Yu. Development of the Model of Turbulent Atmosphere at the Large Solar Vacuum Telescope Site as Applied to Image Adaptation // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 202–206.
    Copy the reference to clipboard    Open the english version
  9. Banakh V.A., Kudryavtsev A.N., Sazanovich V.M., Tsvyk R.Sh. Measurements of large-format laser beams. P. 911–916
    Bibliographic reference:
    Banakh V.A., Kudryavtsev A.N., Sazanovich V.M., Tsvyk R.Sh. Measurements of large-format laser beams. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 911–916 [in Russian].
    Copy the reference to clipboard
  10. Sukharev A.A. Aeroptical effects caused by supersonic airflow around an ogival body. P. 917–922
    Bibliographic reference:
    Sukharev A.A. Aeroptical effects caused by supersonic airflow around an ogival body. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 917–922 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Sukharev A.A. Aeroptical Effects Caused by Supersonic Airflow around an Ogival Body // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 207–212.
    Copy the reference to clipboard    Open the english version
  11. Kapitanov V.A., Osipov K.Yu. Softwave-controlled high resolution laser photoacoustic spectrometer. Methods and programs for measuring and processing weak absorption spectra of atmospheric gases. P. 923–929
    Bibliographic reference:
    Kapitanov V.A., Osipov K.Yu. Softwave-controlled high resolution laser photoacoustic spectrometer. Methods and programs for measuring and processing weak absorption spectra of atmospheric gases. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 923–929 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Kapitanov V.A. and Osipov K.Yu. Software-Controlled High-Resolution Laser Photoacoustic Spectrometer: Techniques and Programs for Measuring and Processing Weak Absorption Spectra of Atmospheric Gases // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 213–219.
    Copy the reference to clipboard    Open the english version
  12. Serdyukov V.I., Sinitsa L.N., Lugovskoy A.A., Emelyanov N.M. The low-temperature cell for studying the absorption spectra of greenhouse gases. P. 930–936
    Bibliographic reference:
    Serdyukov V.I., Sinitsa L.N., Lugovskoy A.A., Emelyanov N.M. The low-temperature cell for studying the absorption spectra of greenhouse gases. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 930–936 [in Russian].
    Copy the reference to clipboard
    Bibliographic reference to english version:
    Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A. and Emelyanov N.M. Low-Temperature Cell for Studying Absorption Spectra of Greenhouse Gases // Atmospheric and Oceanic Optics, 2019, V. 32. No. 02. pp. 220–226.
    Copy the reference to clipboard    Open the english version
  13. Personalia. P. 937
  14. Information
    . P. 938