Vol. 31, issue 07, article # 4

Kurbatova M.M., Rubinshtein K.G. Hybrid method for wind gust firecast. // Optika Atmosfery i Okeana. 2018. V. 31. No. 07. P. 523–529 [in Russian].
Copy the reference to clipboard
Abstract:

Various methods for predicting wind gusts speed based on numerical atmospheric models are considered. On the basis of different methods’ skill scores a new hybrid method for forecasting gusts is proposed. This method takes into account wind gusts of different formation mechanisms. Seven methods for forecasting wind gusts are evaluated based on the data of high-frequency measurements and the network of synoptic stations are given. The hybrid method gives more stable results throughout the year.

Keywords:

wind gusts, numerical weather model, forecast, turbulence, extreme meteorological events

References:

  1. Brabson B.B., Palutikof J.P. Tests of the generalized Pareto distribution for predicting extreme wind speeds // J. Appl. Meteorol. 2000. V. 39, N 9. P. 1627–1640.
  2. Staid A., Pinson P., Guikema S.D. Probabilistic maximum-value wind prediction for offshore environments // Wind Energy. 2015. V. 18, N 10. P. 1725–1738.
  3. Alekseeva A.A. Metod prognoza sil'nyh shkvalov // Meteorol. i gidrol. 2014. N 9. P. 5–15.
  4. Perekhodtseva E.V. Gidrodinamiko-statisticheskij metod prognoza shkvalov i ochen' sil'nogo vetra v gradatsii opasnyh yavlenij v letnij period s zablagovremennost'yu 12–36 h po vyhodnym dannym regional'noj modeli dlya Evropejskoj territorii Rossii // Rezul'taty ispytaniya novyh i usovershenstvovannyh tekhnologij, modelej i metodov gidrometeorologicheskih prognozov. 2013. N 40. P. 170–181.
  5. Forecasters’ Reference Book. London: Met. Office, 1993. 191 p.
  6. Yusupov Yu.I. Metod prognoza shkvalov s ispol'zovaniem termodinamicheskih parametrov atmosfery i potentsial'nogo vihrya Ertelya // Meteorol. i gidrol. 2013. № 11. С. 55–63.
  7. Born K., Ludwig P., Pinto J.G. Implementation and evaluation of wind gust estimate methods in COSMO-CLM // EGU General Assembly Conf. Abstr. 2010. V. 12. P. 9925.
  8. Born K., Ludwig P., Pinto J.G. Wind gust estimation for Mid-European winter storms: Towards a probabilistic view // Tellus A. 2012. V. 64, iss. 1. 18 p.
  9. Schreur B.W., Geertsema G. Theory for a TKE based parameterization of wind gusts // HIRLAM Newslett. 2008. N 54. P. 177–188.
  10. Bradbury W.M.S., Deaves D.M., Hunt J.C.R., Kershaw R., Nakamura K., Hardman M.E., Bearmen P.W. The importance of convective gusts // Meteorol. Appl. 1994. V. 1, N 4. P. 365–378.
  11. Nakamura K., Kershaw R., Gait N. Prediction of near-surface gusts generated by deep convection // Meteorol. Appl. 1996. V. 3, N 2. P. 157–167.
  12. Brasseur O. Development and application of a physical approach to estimating wind gusts // Mon. Weather Rev. 2001. V. 129, N 1. P. 5–25.
  13. Sckamarock W.C., Klemp J.B. A time-split non-hydrostatic atmospheric model for weather research and forecasting applications // J. Comput. Phys. 2008. V. 227. P. 3465–3485.
  14. Smirnova M.M., Rubinshtejn K.G., Yushkov V.P. Otsenka vosproizvedeniya regional'noj model'yu harakteristik pogranichnogo sloya atmosfery // Meteorol. i gidrol. 2011. N 12. P. 5–16.
  15. Kanamitsu M., Alpert J.C., Campana K.A., Caplan P.M., Deaven D.G., Iredell M., Katz B., Pan H.-L., Sela J., White G.H. Recent changes implemented into the global forecast system at NMC // Weather Forecast. 1991. V. 6, N 3. P. 425–435.
  16. URL: http://www.emc.ncep.noaa.gov/GFS/doc.php (last access: 13.06.2018).
  17. Giannakopoulou E.M., Nhili R. WRF model methodology for offshore wind energy applications // Adv. Meteorol. 2014. V. 2014. 14 p.
  18. Coniglio M.C., Correia J., Marsh P., Kong F. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations // Weather Forecast. 2013. V. 28, N 3. P. 842–862.
  19. Bychkova V.I., Smirnova M.M. Analiz polya vetra i temperatury pri nizovoj meteli po empiricheskim dannym // Meteorol. i gidrol. 2018. N 1. P. 21–33.
  20. Thompson G., Rasmussen R.M., Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis // Mon. Weather Rev. 2014. N 132. P. 519–542.
  21. Iacono M.J., Delamere J.S., Mlawer E.J., Shepard M.W., Clough S.A., Collins W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models // J. Geophys. Res.: Atmos. 2008. V. 113, N D13. P. D13103.
  22. Tewari M., Chen F., Wang W., Dudhia J., LeMone M.A., Mitchell K., Ek M., Gayno G., Wegiel J., Cuenca R.H. Implementation and verification of the unified NOAH land surface model in the WRF model // 20th conference on weather analysis and forecasting; 16th conference on numerical weather prediction. 2004. V. 1115. 6 p.
  23. Janjić Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes // Mon. Weather Rev. 1994. V. 122, N 5. P. 927–945.
  24. Nakanishi M., Niino H. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog // Bound.-Lay. Meteorol. 2006. V. 119, N 2. P. 397–407.
  25. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v atmosfernom pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p.
  26. Guide to meteorological instruments and methods of observation / WMO. Geneva, Switzerland: Chairperson, Publications Board, 2008. 714 р.

Back