Vol. 31, issue 06, article # 5

Pustovalov K.N., Nagorsky P.M. The comparative analysis of electrical quantities of a surface layer during passage of cumulonimbus clouds in the warm and cold seasons. // Optika Atmosfery i Okeana. 2018. V. 31. No. 06. P. 451–455 [in Russian].
Copy the reference to clipboard
Abstract:

Using the monitoring data of electrical quantities of a surface layer in Tomsk in 2006–2017, the their slow variations connected with passage of cumulonimbus (Cb) clouds and concomitant weather phenomena in the warm and cold seasons were studied. In total, 453 and 210 events for warm and cold seasons, respectively, were considered. A statistical analysis of these slow variations in the electric field potential gradient was carried out. The distribution of the total duration of the potential gradient slow variations is described by the power-series distribution (Pareto distribution).

Keywords:

atmospheric electricity, cumulonimbus, showers, surface air layer

References:

  1. Tverskoj N.P. Atmosfernoe elektrichestvo. L.: Gidrometeoizdat, 1949. 252 p.
  2. Chalmers J.A. Atmospheric Electricity. 2nd Edition / J.A. Chalmers. Oxford: Pergamon Press Ltd, 1967. 515 p.
  3. Pustovalov K.N., Nagorskij P.M. Osnovnye tipy variatsij elektricheskogo polya pri prokhozhdenii kuchevo-dozhdevykh oblakov razlichnogo genezisa // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 647–653.
  4. Filippov A.X. Grozy Vostochnoj Sibiri. L.: Gidrometeoizdat, 1974. 75 p.
  5. MacGorman D.R., Rust W.D. The Electrical Nature of Storms. New York: Oxford Univ. Press, 1998. 432 p.
  6. Rakov V.A., Uman M.A. Lightning: Physics and Effects. Cambridge: Cambridge Univ. Press, 2003. 687 p.
  7. Bennett A.J., Harrison R.G. Atmospheric electricity in different weather conditions // Weather. 2007. V. 62. P. 277–283.
  8. Popov I.B. Statisticheskie otsenki vliyaniya razlichnykh meteorologicheskikh yavlenij na gradient elektricheskogo potentsiala atmosfery // Tr. GGO. 2008. Iss. 558. P. 152‒161.
  9. Marshall T.C. Electrical evolution during the decay stage of New Mexico thunderstorms // J. Geophys. Res. 2009. V. 114. P. D02209.
  10. Toropov A.A., Kozlov V.I., Mullayarov V.A., Starodubtsev S.A. Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration // J. Atmos. Sol.-Terr. Phys. 2013. N 94. P. 13–18.
  11. Imyanitov I.M., CHubarina E.V., Shvarts Ya.M. Elektrichestvo oblakov. L.: Gidrometeoizdat, 1971. 94 p.
  12. Shmeter S.M. Termodinamika i fizika konvektivnykh oblakov. L.: Gidrometeoizdat, 1987. 287 p.
  13. Bluestein H.B. Severe Convective Storms and Tornadoes: Observations and Dynamics. Berlin: Springer Berlin Heidelberg, 2013. 456 p.
  14. Wang P.K. Physics and Dynamics of Clouds and Precipitation. Cambridge: Cambridge Univ. Press, 2013. 467 p.
  15. Houze R.A. Cloud Dynamics. 2nd Edition. New York; London: Acad. Press, 2014. 496 p.
  16. Nagorskij P.M., Morozov V.N., Smirnov S.V., Pustovalov K.N. Elektrodnyj sloj v elektricheskom pole moshchnoj konvektivnoj oblachnosti // Izv. vuzov. Radiofizika. 2013. V. 56, N 11. P. 853–863.
  17. Hobbs P.M. Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms // Rev. Geophys. Space Phys. 1978. V. 16, N 4. P. 741–755.
  18. Shmeter S.M. Kharakteristiki zatoplennoj konvektsii vo frontal'nykh oblakakh i usloviya ee obrazovaniya // Meteorol. i gidrol. 1990. N 11. P. 36–44.

Back