Vol. 31, issue 02, article # 7

Nasrtdinov I. M., Zhuravleva T. B., Chesnokova T. Yu. Estimates of direct radiation effects of background and smoke aerosol in IR spectral region for Siberian summer conditions. // Optika Atmosfery i Okeana. 2018. V. 31. No. 02. P. 121–127. DOI: 10.15372/AOO20180207 [in Russian].
Copy the reference to clipboard

Abstract:

We presented estimates of direct radiation effects (DRE) of background and smoke aerosol in the IR spectral region obtained using an original algorithm of the Monte Carlo method and OPAC models for typical summer conditions and conditions of 2012 smoke haze on the territory of Siberia. It is shown that the DRE value at the atmospheric boundaries in the thermal range with respect to the daily average radiative effect in the solar spectral region is approximately 3% under the background conditions and 10–15% under the conditions of strong turbidity.

Keywords:

numerical simulation, OPAC models, direct radiation effect, background and smoke aerosol, IR spectral region

References:

  1. Myhre G., Shindell D., Bréon F.-M., Collins W., Fug-lestvedt J., Huang J., Koch D., Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. Anthropogenic and natural radiative forcing // Climate Change 2013: The Physical Science Basis / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.). UK: Cambridge University Press, 2014. P. 659–740. DOI: 10.1017/ CBO9781107415324.018.
  2. Claquin T., Schulz M., Balkanski Y., Boucher O. Uncertainties in assessing radiative forcing by mineral dust // Tellus. 1998. V. 50, P. 491–505. DOI:10.1034/j. 1600-0889.1998.t01-2-00007.x.
  3. Miller R.L., Tegen I., Perlwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle // J. Geophys. Res. 2004. V. 109. P. D04203. DOI: 10.1029/2003JD004085.
  4. Ritter C., Notholt J., Fischer J., Rathke C. Direct thermal radiative forcing of tropospheric aerosol in the Arctic measured by ground based infrared spectrometry // Geophys. Res. Lett. 2005. V. 32. P. L23816. DOI: 10.1029/2005GL024331.
  5. Dey S., Tripathi S.N. Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: Long-term (2001–2005) observations and implications to regional climate // J. Geophys. Res. 2008. V. 113. P. D04212. DOI:10.1029/2007JD009029.
  6. Vogelmann A.M., Flatau P.J., Szczodrak M., Markowicz K.M., Minnett P.J. Observations of large aerosol infrared forcing at the surface // Geophys. Res. Lett. 2003. V. 30, N 12. P. 1655. DOI: 10.1029/ 2002GL016829.
  7. Markowicz K., Flatau P.J., Vogelmann A.M., Quinn P.K., Welton E.J. Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere // Q. J. R. Meteorol. Soc. 2003. V. 129. P. 2927–2947.
  8. Hansell R.A., Tsay S.C., Ji Q., Hsu N.C., Jeong M.J., Wang S.H., Reid J.S., Liou K.N., Ou S.C. An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign // J. Atmos. Sci. 2010. V. 67. P. 1048–1065.
  9. Sicard M., Bertolín S., Muñoz C., Rodríguez A., Rocadenbosch F., Comerón A. Separation of aerosol fine- and coarse-mode radiative properties: Effect on the mineral dust longwave, direct radiative forcing // Geophys. Res. Lett. 2014. V. 41, iss. 19. P. 6978–6985. DOI: 10.1002/2014GL060946.
  10. Gorchakova I.A., Mohov I.I., Rublev A.N. Vlijanie ajerozolja na radiacionnyj rezhim bezoblachnoj atmosfery po dannym zvenigorodskih ajerozol'no-oblachno-radiacionnyh jeksperimentov // Izv. RAN. Fiz. atmosf. i okeana. 2005. V. 41, N 4. P. 496–510.
  11. Panicker A.S., Pandithurai G., Safai P.D., Kewat S. Observations of enhanced aerosol longwave radiative forcing over an urban environment // Geophys. Res. Lett. 2008. V. 35, iss. 4. P. L04817. DOI: 10.1029/ 2007GL032879.
  12. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10. P. 179–198. DOI: 10.5194/amt-10-179-2017.
  13. Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol'kin V.V., Terpugova S.A., Chernov D.G. Model'nye ocenki dnevnogo hoda vertikal'noj struktury pogloshhenija solnechnogo izluchenija i temperaturnyh jeffektov v fonovyh uslovijah i jekstremal'no zadymlennoj atmosfere po dannym samoletnyh nabljudenij // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 834–839; Zhuravleva T.B., Panchenko M.V., Kozlov V.S., Nasrtdinov I.M., Pol’-kin V.V., Terpugova S.A., Chernov D.G. Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in an extremely smoke-laden atmosphere according to data of aircraft observations // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 25–30.
  14. Panchenko M.V., Zhuravleva T.B., Terpugova S.A., Polkin V.V., Kozlov V.S. An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer. // Atmos. Meas. Tech. 2012. V. 5, N 7. P. 1513–1527. DOI: 10.5194/ amt-5-1513-201.
  15. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79. P. 831–844.
  16. Berk A, Bernstein L.S., Robertson D.C. MODTRAN: A moderate resolution model for LOWTRAN7. GL-TR-89-0122 // Geophysics Directorate. Hanscom: Phillips Laboratory, 1989. 42 p.
  17. Mayer B., Kylling A. Technical note: The libRadtran software package for radiative transfer calculations: Description and examples of use // Atmos. Chem. Phys. 2005. V. 5. P. 1855–1877.
  18. Fomin B.A. Monte-Carlo algorithm for line-by-line calculations of thermal radiation in multiple scattering layered atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 98. P. 107–115.
  19. Edwards J.M., Slingo A. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model // Q. J. R. Meteorol. Soc. 1996. V. 122. P. 689–719.
  20. Lubin D., Satheesh S.-K., McFarquhar G., Heymsfield A.J. Longwave radiative forcing of Indian Ocean tropospheric aerosol // J. Geophys. Res. D. 2002. V. 107, N 19. P. 2156–2202. DOI: 10.1029/2001JD001183.
  21. World Climate Program: 1986. A preliminary cloudless standard atmosphere for radiation computation. WCP-112, WMO/TD-24.  Geneva,  Switzerland:  WMO,  1986.  60 p.
  22. Turner D.D. Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel // J. Geophys. Res. 2008. V. 113. P. D00E03. DOI: 10.1029/2008JD010054.
  23. Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Modelirovanie prjamogo radiacionnogo forsinga dlja tipichnyh letnih uslovij Sibiri. Part 1: Metod rascheta i vybor vhodnyh parametrov // Optika atmosf. i okeana. 2009. V. 22, N 2. P. 163–172; Zhuravleva T.B., Kabanov D.M., Sakerin S.M., Firsov K.M. Simulation of aerosol direct radiative forsing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters // Atmos. Ocean. Opt. 2009. V. 22, N 1. P. 63–73.
  24. Nasrtdinov I.M., Zhuravljova T.B., Chesnokova T.Ju., Duchko A.N. Modelirovanie potokov dlinnovolnovogo izluchenija s uchetom rassejanija: sravnenie algoritmov [Jelektronnyj resurs] // Optika atmosf. i okeana. Fiz. atmosf.: Materialy XXII Mezhdunar. simpoz. Tomsk: Izd-vo IOA SO RAN, 2016. URL: http:// symp.iao.ru/files/symp/aoo/22/Section%20A.pdf (дата обращения: 10.09.2017).
  25. Anderson G. AFGL Atmospheric Constituent Profiles (0–120 km) / G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, E. Shettle (eds.) // Air Force Geophysics Laboratory. AFGL-TR-86-0110. Environmental Research Paper. 1986. N 954. 25 p.
  26. Morino I., Uchino O., Inoue M., Yoshida Y., Yokota T., Wennberg P.O., Toon G.C., Wunch D., Roehl C.M., Notholt J., Warneke T., Messerschmidt J., Griffith D.W. T., Deutscher N.M., Sherlock V., Connor B., Robinson J., Sussmann R., Rettinger M. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra // Atmos. Meas. Tech. Discuss. 2010. V. 3. P. 5613–5643.
  27. Chesnokova T.Yu., Chentsov A.V., Rokotyan N.V., Zakharov V.I. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals // J. Mol. Spectrosc. 2016. V. 327. P. 171–179. DOI: 10.1016/j.jms.2016.07.001.
  28. Sivasakthivel T., Siva Kumar Reddy K.K. Ozone layer depletion and its effects: A review // Int. J. Environ. Sci. Dev. 2011. V. 2, N 1. P. 30–37.
  29. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. Changes in Atmospheric Constituents and in Radiative Forcing // Climate Change 2007: The Physical Science Basis / S. Solomon, D. Qin, M. Man-ning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, 2007. P. 129–234.
  30. ASTER Spectral Library. Version 1.2. [Electronic resource]. URL: http://speclib.jpl.nasa.gov (last access: 17.02.2017).
  31. Dufresne J.-L., Gautier C., Ricchiazzi P., Fouquart Y. Longwave scattering effects of mineral aerosols // J. Atmos. Sci. 2002. V. 59. P. 1959–1966.
  32. Mishra A.K., Koren I., Rudich Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect // Heliyon. 2015. V. 1, N 2. P. e00036.

  33.