Vol. 31, issue 02, article # 5

Orlov A.O., Gurulev A.A., Krylov S.D., Tsyrenzhapov S.V. Electromagnetic radiation attenuation in wet aerosols at low temperatures in the microwave range. // Optika Atmosfery i Okeana. 2018. V. 31. No. 02. P. 109–113 [in Russian].
Copy the reference to clipboard
Abstract:

Measurements of the attenuation of electromagnetic radiation in supercooled water in the wavelength range from 0.2 to 3.0 cm with its supercooling to a temperature of about –70 °C are performed. Nanoporous materials were used to achieve deep supercooling. In such materials, the properties of pore water are close to those of bulk water. The measurements made it possible to derive a formula for the attenuation coefficient of supercooled water at temperatures below –30 °C. With the use of new data, calculations of the linear attenuation of electromagnetic radiation in the millimeter wavelength range at low temperatures for wet aerosols with small electromagnetic losses of the particle material were performed.

Keywords:

microwave range, supercooled water, aerosol, attenuation coefficient

References:

  1. Rostokin I.N., Rostokina E.A., Efremov E.A. Trehkanal'naja SVCh-radiometricheskaja sistema distancionnogo zondirovanija oblachnoj atmosfery // Radiotehnicheskie i telekommunikacionnye sistemy. 2013. N 2. P. 4–8.
  2. Koldaev A.V., Troickij A.V., Shhukin G.G. Nazemnye podsputnikovye SVCh-radiometricheskie issledovanija gorizontal'noj odnorodnosti vodnosti zimnih oblakov // Issled. Zemli iz kosmosa. 2009. N 2. P. 11–18.
  3. Kutuza B.G., Danilychev M.V., Jakovlev O.I. Sputnikovyj monitoring Zemli: mikrovolnovaja radiometrija atmosfery i poverhnosti. M.: LENAND, 2016. 336 p.
  4. Sadovskij I.N., Sharkov E.A., Kuz'min A.V., Sazonov D.S., Pashinov E.V. Obzor modelej kompleksnoj dijelektricheskoj pronicaemosti vodnoj sredy, primenjaemyh v praktike distancionnogo zondirovanija // Issled. Zemli iz kosmosa. 2014. N 6. P. 79–92.
  5. Mitnik M.L., Mitnik L.M. Variacii zaderzhki signalov GPS/GLONASS v atmosfere po dannym modelirovanija i sputnikovoj mikrovolnovoj radiometrii // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2012. V. 9, N 4. P. 63–69.
  6. Ellison W.J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C // J. Chem. Phys. Ref. Data. 2007. V. 36, N 1. P. 1–18.
  7. Bertolini D., Cassettari M., Salvetti G. The dielectric relaxation time of supercooled water // J. Chem. Phys. 1982. V. 76, N 6. P. 3285–3290.
  8. Schreiber A., Kotelsen I., Findenegy G.H. Melting and freezing of water in ordered mesoporous silica materials // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1185–1195.
  9. Limmer D.T., Chandler D. Phase diagram of supercooled water confined to hydrophilic nanopores // J. Chem. Phys. 2012. V. 137. P. 044509/11.
  10. Castrillon S.R.-V., Giovambattista N., Arsay I.A., Debenedetti P.G. Structure and energetics of thin film water // J. Phys. Chem. C. 2011. V. 115. P. 4624–4635.
  11. Ivlev L.S., Dovgaljuk Ju.A. Fizika atmosfernyh ajerozol'nyh sistem. SPb.: NIIH SPbGU, 1999. 194 p.
  12. Ermakov V.B. Oslablenie SVCh-radiovoln v sredah s mikrochasticami tverdogo ugleroda: Avtoref. dis. … kand. fiz.-mat. nauk. M.: IRJe RAN, 1993. 17 p.
  13. Boren K., Hafmen D. Pogloshhenie i rassejanie sveta malymi chasticami. M.: Mir, 1986. 664 p.
  14. Meissner T., Wentz F.J. The complex dielectric constant of pure and sea water from microwave satellite observations // IEEE Trans. Geosci. Rem. Sens. 2004. V. 42, N 9. P. 1836–1849.
  15. Bordonskij G.S., Krylov S.D. Strukturnye prevrashhenija pereohlazhdennoj vody v nanoporah po dannym o pogloshhenii mikrovolnovogo izluchenija // Zh. fiz. himii. 2012. V. 86, N 11. P. 1806–1812.
  16. Bordonskij G.S., Orlov A.O., Hapin Ju.B. Kojefficient zatuhanija i dijelektricheskaja pronicaemost' pereohlazhdennoj ob#emnoj vody v intervale temperatur 0…–90°C na chastotah 11…140 GHz // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2017. V. 14, N 3. P. 255–270.

Back