Vol. 31, issue 02, article # 3

Dudorov V. V., Eremina A. S. Digital compensation of turbulent distortions of incoherent optical images using multiaperture systems. // Optika Atmosfery i Okeana. 2018. V. 31. No. 02. P. 95–102. DOI: 10.15372/AOO20180203 [in Russian].
Copy the reference to clipboard

Abstract:

Possibilities of enhancement of the operational efficiency of optical multiaperture systems in a turbulent atmosphere are studied in numerical simulation. Features of the synthesis of an object image as a sum (superposition) of images from every individual aperture are analyzed under the presence of turbulent distortions. The quality of images synthesized by a matrix of N × N subapertures (N = 5–10) is analyzed. It is shown that turbulent distortions in an image synthesized with the use of many subapertures accounting shifts of subimages at each subaperture are isoplanar in a wide range of atmospheric conditions. This allows significant improvement of the image quality by means of computer correction. In this case, there is an optimal subaperture size mainly determined by the Fried parameter, which characterizes the degree of turbulent distortions.

Keywords:

multiaperture systems, turbulent atmosphere, computational imaging

References:

  1. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 286 p.
  2. Van Eekeren A.W.M., Schutte K., Dijk J., Schwering P.B.W., van Iersel M., Doelman N.J. Turbulence compensation: An overview // Proc. SPIE. 2012. V. 8355. Р. 83550Q-1–83550Q-10.
  3. Huebner C.S., Greco M. Blind deconvolution algorithms for the restoration of atmospherically degraded imagery: A comparative analysis // Proc. SPIE. 2008. V. 7108. Р. 71080M-1–71080M-12.
  4. Van Eekeren A.W.M., Kruithof M.C., Schutte K., Dijk J., van Iersel M., Schwering P.B.W. Patch-based local turbulence compensation in anisoplanatic conditions // Proc. SPIE. 2012. V. 8355. Р. 83550T-1.
  5. Zhu X., Milanfar P. Image reconstruction from videos distorted by atmospheric turbulence // Proc. SPIE. 2010. V. 7543. P. 75430S.
  6. Aubailly M., Vorontsov M.A., Carhar G.W., Valley M.T. Automated video enhancement from a stream of atmospherically-distorted images: The lucky-region fusion approach // Proc. SPIE. 2009. V. 7463. P. 74630C.
  7. Konjaev P.A., Borovik A.V., Zhdanov A.A. Analiz struktury i razvitija vnepjatennyh vspyshek po cifrovym izobrazhenijam hromosfery Solnca // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 844–849; Kоnyaev P.А., Bоrоvik А.V., Zhdаnоv А.А. Analysis of structure and development of spotless flares using digital images of the solar chromosphere // Atmos. Ocean. Opt. 2016. V. 29, N 1. P. 89–94.
  8. Averin A.P., Morozov Ju.B., Prjanichnikov V.S., Tjapin V.V. Komp'juternaja korrekcija turbulentnyh iskazhenij izobrazhenija protjazhennogo ob#ekta na prizemnyh trassah // Kvant. jelektron. 2011. V. 41, N 5. P. 475–478.
  9. Hope D.A., Jefferies S.M., Hart M., Nagy J.G. High-resolution speckle imaging through strong atmospheric turbulence // Opt. Express. 2016. V. 24, N 11. P. 12116–12129.
  10. Ivanov M., McGaughey D. Image reconstruction by aperture diversity blind deconvolution // Proc. of AMOS Tech. Conf. 12–15 September, 2007. Wailea, Maui, Hawaii. P. E78.
  11. Schulz T. Multiframe blind deconvolution of astronomical images // J. Opt. Soc. Am. A. 1993. V. 10, N 5. P. 1064–1073.
  12. Miller N.J., Haus J.W., McManamon P.F., Shemano D. Multi-aperture coherent imaging // Proc. SPIE. 2009. V. 8052. Р. 805207-1-12.
  13. Dudorov V.V., Eremina A.S. Vozmozhnosti povyshenija kachestva iskazhennyh turbulentnymi neodnorodnostjami izobrazhenij udalennyh ob#ektov na osnove ispol'zovanija mnogoaperturnyh sistem nabljudenija // Ajerozoli Sibiri: XXIII Rabochaja gruppa: tez. dokl. Tomsk: Izd-vo IOA SO RAN, 2016. P. 110.
  14. Vorontsov M.A., Kolosov V.V. Target-in-the-loop beam control: Basic considerations for analysis and wave-front sensing // J. Opt. Soc. Am. A. 2005. V. 22. P. 126–141.
  15. Lachinova S.L., Vorontsov M.A., Dudorov V.V., Kolosov V.V., Valley M.T. Anisoplanatic imaging through atmospheric turbulence: Brightness function approach // Proc. SPIE. 2007. V. 6708. P. 67080E.
  16. Dudorov V.V., Kolosov V.V. Korrekcija nekogerentnyh izobrazhenij ob#ektov v uslovijah anizoplanatizma turbulentnosti po opornomu istochniku izluchenija razlichnoj dliny volny // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 392–397; Dudorov V.V., Kolosov V.V. Anisoplanatic Turbulence correction in incoherent imaging by using reference sources with different wavelengths // Atmos. Ocean. Opt. 2010. V. 23, N 5. P. 353–358.
  17. Dudorov V.V., Eremina A.S. Determination of atmospheric turbulent inhomogeneity wind drift from sequence of incoherent images // Proc. SPIE. 2014. V. 9292. P. 92921F.
  18. Eremina A.S., Dudorov V.V. Sposob fil'tracii i opredelenija skorosti smeshhenija turbulentnyh iskazhenij v videorjade opticheskih izobrazhenij pri vetrovom snose atmosfernyh neodnorodnostej // Izv. vuzov. Fizika. 2015. V. 58, N 8/2. P. 192–194.
  19. Dudorov V.V., Eremina A.S. Filtration of optical image distortions for retrieving the drift velocity of atmospheric turbulence inhomogeneities // Proc. SPIE. 2015. V. 9680. Р. 96802E.
  20. Dudorov V.V., Eremina A.S. Opredelenie poperechnoj sostavljajushhej skorosti vetra na osnove analiza videorjada izobrazhenij udalennyh ob#ektov. Part 1. Smeshhenie tonkogo sloja turbulentnyh neodnorodnostej // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 274–280; Dudorov V.V., Eremina A.S. Retrieval of crosswind velocity based on the analysis of remote object images: Part 1 – Drift of a thin layer of turbulent inhomogeneities // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 422–428.
  21. Stjuard I.G. Vvedenie v Fur'e-optiku. M.: Mir, 1985. 182 p.

  22.