Vol. 31, issue 02, article # 1

Razenkov I. A. Turbulent lidar. II. Experiment. // Optika Atmosfery i Okeana. 2018. V. 31. No. 02. P. 81–89. DOI: 10.15372/AOO20180201 [in Russian].
Copy the reference to clipboard

Abstract:

Results of field experiments at horizontal paths with the use of BSA-2 and BSA-3 turbulent lidars, principles and design of which have been described in the first part, are presented. Lidar BSA-2 operated at 2 km path together with the independent image jitter sensor (IJS). Lidar BSA-3 operated at a horizontal 26 km path. Lidar BSA-2 was used in the experiments aimed at the study of the shape of the backscatter amplification peak; the sounding was done with apertures of different sizes. The experimental dependence of the q-factor of the effect of turbulence depending on the size of the receiving aperture is derived, which agrees satisfactorily with V.V. Vorob’ev’s formula. The lidar sounding data and results of the data conversion into the structure constant of the “optical” turbulence C2n with the use of V.V. Vorob’ev approximation for homogeneous turbulence are presented. The sounding range was ~ 10 km. The correlation between lidar and image jitter sensor data is 0.7–0.8. The sounding in urban environment showed that the horizontal path is not statistically homogeneous; therefore, more complex procedures should be used for retrieval of the structure characteristic  in the future when solving the inverse problems of lidar sounding of turbulence.

Keywords:

atmospheric turbulence, backscatter amplification effect, lidar

References:

  1. Razenkov I.A. Turbulentnyj lidar. I. Konstrukcija // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48.
  2. Banah V.A., Razenkov I.A. Lidarnye izmerenija usilenija obratnogo rassejanija // Optika i spektroskopija. 2016. V. 120, N 2. P. 339–348.
  3. Razenkov I.A. Malozatratnyj postojannogo dejstvija datchik drozhanija izobrazhenija s bazoj 2 km // Sb. dokl. XXII Mezhdunar. simpoz. «Optika atmosf. i okeana. Fizika atmosfery». [Jelektronnyj resurs – 1 CD-ROM]. ISBN 978-5-94458-159-4. Tomsk: Izd-vo IOA SO RAN, 2016. P. B241–B244.
  4. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovlenija parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovanija. I. Uravnenija // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
  5. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovlenija parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovanija. II. Rezul'taty chislennogo modelirovanija // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
  6. Konjaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Ob izmerenii strukturnoj harakteristiki pokazatelja prelomlenija atmosfery passivnymi opticheskimi metodami // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 738–741; Konyaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Passive optical methods in measurement of the structure parameter of the air refractive Index // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 522–525.
  7. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  8. Vorob'ev V.V., Vinogradov A.G. Vlijanie fonovoj turbulentnosti v lidarnyh issledovanijah turbulentnosti jasnogo neba // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1015–1022; Vorob’ev V.V., Vinogradov A.G. Effect of background turbulence in lidar investigations of clear air turbulence // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 134–141.
  9. Vinogradov A.G., Kravcov Ju.A., Tatarskij V.I. Jeffekt usilenija obratnogo rassejanija na telah, pomeshhennyh v sredu so sluchajnymi neodnorodnostjami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
  10. Banakh V.A., Razenkov I.A. Refractive turbulence strength estimation based on the laser echo signal amplification effect // Opt. Lett. 2016. V. 41, N 19. P. 4429–4432.
  11. Banah V.A., Mironov V.L. Lokacionnoe rasprostranenie lazernogo izluchenija v turbulentnoj atmosfere. Novosibirsk: Nauka, 1986. 173 p.